A Review of Nanoliposomal Delivery System for Stabilization of Bioactive Omega-3 Fatty Acids

Authors

  • Zahra Hadian National Nutrition and Food Technology Research Institute (NNFTRI), Shahid Beheshti University of Medical Sciences (SBUMS), Tehran, Iran

Keywords:

Omega-3 Fatty Acids; Stabilization; Nanoliposome; Bioactive

Abstract

urrently, bioactive compounds are required in the design and production of functional foods, with the aim of improving the health status of consumers all around the world. Various epidemiological and clinical studies have demonstrated the salutary role of eicosapentaenoic acid (EPA, 22:6 n-3) and docosahexaenoic acid (DHA, 22:5 n-3) in preventing diseases and reducing mortality from cardiovascular diseases. The unsaturated nature of bioactive lipids leads to susceptibility to oxidation under environmental conditions. Oxidative deterioration of omega-3 fatty acids can cause the reduction in their nutritional quality and sensory properties. Encapsulation of these fatty acids could create a barrier against reaction with harmful environmental factors. Currently, fortification of foods containing bioactive omega-3 fatty acids has found great application in the food industries of different countries. Previous studies have suggested that nano-encapsulation has significant effects on the stability of physical and chemical properties of bioactive compounds. Considering the functional role of omega-3 fatty acids, this study has provided a literature review on applications of nanoliposomal delivery systems for encapsulation of these bioactive compounds.

References

Anderson AS. Fish-risks and benefits. J Hum Nutr Diet. 2004; 17(5): 411-2. doi: 10.1111/j.1365- 277X.2004.00558.x. PMID: 15357693

Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv

Nutr. 2012; 3(1): 1-7. doi: 10.3945/an.111.000893, PMID: 22332096.

Elizondo E, Moreno E, Cabrera I, Cordoba A, Sala S, Veciana J, et al. Liposomes and other vesicular

systems: structural characteristics, methods of preparation, and use in nanomedicine. Prog Mol Biol Transl

Sci. 2010; 104: 1-52. doi: 10.1016/B978-0-12-416020-0.00001-2, PMID: 22093216.

Nicholson T, Khademi H, Moghadasian MH. The role of marine n-3 fatty acids in improving

cardiovascular health: a review. Food Funct. 2013; 4(3): 357-65. doi: 10.1039/c2fo30235g, PMID:

Crepet A, Tressou J, Verger P, Leblanc JC. Management options to reduce exposure to methyl mercury

through the consumption of fish and fishery products by the French population. Regul Toxicol Pharmacol.

; 42(2): 179-89. doi: 10.1016/j.yrtph.2005.03.006, PMID: 15882918.

Von Schacky C. The Omega-3 Index as a risk factor for cardiovascular diseases. Prostaglandins Other

Lipid Mediat. 2011; 96(1-4): 94-8. doi: 10.1016/j.prostaglandins.2011.06.008, PMID: 21726658.

Reza Mozafari M, Johnson C, Hatziantoniou S, Demetzos C. Nanoliposomes and their applications in food

nanotechnology. J Liposome Res. 2008; 18(4): 309-27. doi: 10.1080/08982100802465941, PMID:

Siriwardhana N, Kalupahana NS, Moustaid-Moussa N. Health benefits of n-3 polyunsaturated fatty acids:

eicosapentaenoic acid and docosahexaenoic acid. Adv Food Nutr Res. 2012; 65: 211-22. doi:

1016/B978-0-12-416003-3.00013-5, PMID: 22361189.

Zuidam N, Nedovic V. Encapsulation Technologies for Active Food Ingredients and Food Processing,©

Springer Science+ Business Media. LLC. 2010.1-400. doi: 10.1007/978-1-4419-1008-0.

Brandl M. Liposomes as drug carriers: A technological approach. Biotechnol Annu Rev. 2001; 7: 59-85.

doi: 10.1016/S1387-2656(01)07033-8, PMID: 11686049.

Khan MA, Shahidi F. Tocopherols and phospholipids enhance the oxidative stability of borage and evening

primrose triacylglycerols. J Food Lipids. 2000; 7(3): 143-50. doi: 10.1111/j.1745-4522.2000.tb00167.x.

Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001; 6(1):

-77. doi: 10.1016/S1359-0294(00)00090-X.

Lasic DD. Liposomes: from physics to applications: Elsevier Science Ltd; 1993.

Rasti B, Jinap S, Mozafari M, Yazid A. Comparative study of the oxidative and physical stability of

liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari

methods. Food chem. 2012; 135(4): 2761-70. doi: 10.1016/j.foodchem.2012.07.016, PMID: 22980870.

Heurtault B, Saulnier P, Pech B, Proust J-E, Benoit J-P. Physico-chemical stability of colloidal lipid

particles. Biomaterials. 2003; 24(23): 4283-300. doi: 10.1016/S0142-9612(03)00331-4, PMID: 12853260.

Wallace J, McCabe A, Robson P, Keogh M, Murray C, Kelly P, et al. Bioavailability of n-3

polyunsaturated fatty acids (PUFA) in foods enriched with microencapsulated fish oil. Ann Nutr Metab.

; 44(4): 157-62, PMID: 11111130.

Shahidi F, Finley JW. Omega-3 fatty acids: chemistry, nutrition, and health effects: American Chemical

Society; 2001.

Baum SJ, Kris-Etherton PM, Willett WC, Lichtenstein AH, Rudel LL, Maki KC, et al. Fatty acids in

cardiovascular health and disease: a comprehensive update. J Clin Lipidol. 2012; 6(3): 216-34. doi:

1016/j.jacl.2012.04.077, PMID: 22658146.

Rogers LK, Valentine CJ, Keim SA. DHA supplementation: current implications in pregnancy and

childhood. Pharmacol Res. 2013; 70(1): 13-9. doi: 10.1016/j.phrs.2012.12.003, PMID: 23266567, PMCID:

PMC3602397.

Kamal-Eldin A. Lipid oxidation pathways: AOCS Press; 2003.

Belitz H, Grosch W, Schieberle P, Burghagen M. Food Chemistry, Springer; 1071 p. ISBN: 3540408185.

doi: 10.1007/978-3-540-69934-7.

De Lorgeril M, Salen P. New insights into the health effects of dietary saturated and omega-6 and omega-3

polyunsaturated fatty acids. BMC med. 2012; 10(1): 50. doi: 10.1186/1741-7015-10-50, PMID: 22613931,

PMCID: PMC3394202.

Jafari SM, Assadpoor E, He Y, Bhandari B. Encapsulation efficiency of food flavours and oils during spray

drying. Drying Technology. 2008; 26(7): 816-35. doi: 10.1080/07373930802135972.

Fathi M, Mozafari M, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery

systems. Trends Food Sci Tech. 2012; 23(1): 13-27. doi: 10.1016/j.tifs.2011.08.003.

Desai KGH, Jin Park H. Recent developments in microencapsulation of food ingredients. Drying

technology. 2005; 23(7): 1361-94. doi: 10.1081/DRT-200063478.

Arab-Tehrany E, Jacquot M, Gaiani C, Imran M, Desobry S, Linder M. Beneficial effects and oxidative

stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci Tech. 2012; 25(1): 24-33. doi:

1016/j.tifs.2011.12.002.

Patel A, Velikov KP. Colloidal delivery systems in foods: A general comparison with oral drug delivery.

LWT-Food Sci Technol. 2011; 44(9): 1958-64. doi: 10.1016/j.lwt.2011.04.005.

Olson F, Hunt C, Szoka F, Vail W, Papahadjopoulos D. Preparation of liposomes of defined size

distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta. 1979; 557(1): 9-23.

1016/0005-2736(79)90085-3, PMID: 95096.

Taylor TM, Davidson PM, Bruce BD, Weiss J. Ultrasonic spectroscopy and differential scanning

calorimetry of liposomal-encapsulated nisin. J Agric Food Chem. 2005; 53(22): 8722-8. doi:

1021/jf050726k, PMID: 16248577.

Mozafari MR. Nanocarrier technologies: frontiers of nanotherapy: Springer; 2006.

Perrie Y, Pharmaceutics TR. Drug delivery & targeting. London: Pharmaceutical Press; 2010.

Torchilin V, Weissig V. Liposomes: A practical approach: Oxford University Press; 2003.

Meure LA, Foster NR, Dehghani F. Conventional and dense gas techniques for the production of

liposomes: a review. AAPS PharmSciTech. 2008; 9(3): 798-809. doi: 10.1208/s12249-008-9097-x, PMID:

, PMCID: PMC2977034.

Balon K, Riebesehl B, Müller B. Drug liposome partitioning as a tool for the prediction of human passive

intestinal absorption. Pharm Res. 1999; 16(6): 882-8. doi: 10.1023/A: 1018882221008, PMID: 10397609.

Hem S, Feldkamp J, White J. Basic chemical principles related to emulsion and suspension dosage forms.

The theory and practice of industrial pharmacy, Lachman, L, Lieberman, HA, Kanig, JL, Editors. 1986:

-22.

Nutan MT, Reddy IK. General principles of suspensions. Pharmaceutical Suspensions: Springer; 2010. p.

-65.

Lichtenberg D, Barenholz Y. Liposomes: preparation, characterization, and preservation. Methods

Biochem Anal. 1988; 33: 337-462. PMID: 3282152.

Basu SC, Basu M. Liposome methods and protocols: Springer Science & Business Media; 2002.

Schnitzer E, Pinchuk I, Lichtenberg D. Peroxidation of liposomal lipids. Eur Biophys J. 2007; 36(4-5):

-515. doi: 10.1007/s00249-007-0146-2, PMID: 17380326.

Konings AW. Lipid peroxidation in liposomes. Liposome technology. 1984; 1: 139-61.

Drusch S, Regier M, Bruhn M. Recent advances in the microencapsulation of oils high in polyunsaturated

fatty acids. Novel Technologies in Food Science: Springer; 2012. p. 159-81.

Nara E, Miyashita K, Ota T, Nadachi Y. The Oxidative Stabilities of Polyunsaturated Fatty Acids in

Salmon Egg Phosphatidylcholine Liposomes. Fisheries science. 1998; 64(2): 282-6.

Nacka F, Cansell M, Gouygou J-P, Gerbeaud C, Méléard P, Entressangles B. Physical and chemical

stability of marine lipid-based liposomes under acid conditions. Colloids Surf B Biointerfaces. 2001; 20(3):

-66. doi: 10.1016/S0927-7765(00)00205-8.

Nacka F, Cansell M, Méléard P, Combe N. Incorporation of α-tocopherol in marine lipid-based liposomes:

in vitro and in vivo studies. Lipids. 2001; 36(12): 1313-20. doi: 10.1016/S0927-7765(00)00205-8.

Moussaoui N, Cansell M, Denizot A. Marinosomes, marine lipid-based liposomes: physical

characterization and potential application in cosmetics. Int J Pharm. 2002; 242(1): 361-5. doi:

1016/S0378-5173(02)00217-X, PMID: 12176280.

Cansell M, Nacka F, Combe N. Marine lipid-based liposomes increase in vivo FA bioavailability. Lipids.

; 38(5): 551-9. doi: 10.1007/s11745-003-1341-0. PMID: 12880112.

Lyberg A-M, Fasoli E, Adlercreutz P. Monitoring the oxidation of docosahexaenoic acid in lipids. Lipids.

; 40(9): 969-79. doi: 10.1007/s11745-005-1458-1, PMID: 16329470.

Onuki Y, Morishita M, Chiba Y, Tokiwa S, Takayama K. Docosahexaenoic acid and eicosapentaenoic acid

induce changes in the physical properties of a lipid bilayer model membrane. Chem Pharm Bull. 2006;

(1): 68-71. doi: 10.1248/cpb.54.68, PMID: 16394552.

Namani T, Ishikawa T, Morigaki K, Walde P. Vesicles from docosahexaenoic acid. Colloids Surf B

Biointerfaces. 2007; 54(1): 118-23. doi: 10.1016/j.colsurfb.2006.05.022, PMID: 16829059.

Shaw LA, McClements DJ, Decker EA. Spray-dried multilayered emulsions as a delivery method for

omega-3 fatty acids into food systems. J Agric Food Chem. 2007; 55(8): 3112-9. doi: 10.1021/jf063068s,

PMID: 17371041.

Barrow CJ, Nolan C, Holub BJ. Bioequivalence of encapsulated and microencapsulated fish-oil

supplementation. J Funct Foods. 2009; 1(1): 38-43. doi: 10.1016/j.jff.2008.09.006.

Sarpietro MG, Rocco F, Micieli D, Giuffrida MC, Ottimo S, Castelli F. Absorption of omega-3 fatty acids

by biomembrane models studied by differential scanning calorimetry. Thermochimica Acta. 2010; 503: 55- 60. doi: 10.1016/j.tca.2010.03.007.

Karthik P, Anandharamakrishnan C. Microencapsulation of docosahexaenoic acid by spray-freeze-drying

method and comparison of its stability with spray-drying and freeze-drying methods. Food and Bioprocess

Technology. 2013; 6(10): 2780-90. doi: 10.1007/s11947-012-1024-1.

Hadian Z, Sahari MA, Moghimi HR, Barzegar M. Formulation, characterization and optimization of

liposomes containing eicosapentaenoic and docosahexaenoic acids; A methodology approach. Iran J Pharm

Res. 2014; 13(2): 393-404. PMID: 25237335, PMCID: PMC4157015.

Published

2022-02-12