A Review of Nanoliposomal Delivery System for Stabilization of Bioactive Omega-3 Fatty Acids
Keywords:
Omega-3 Fatty Acids; Stabilization; Nanoliposome; BioactiveAbstract
urrently, bioactive compounds are required in the design and production of functional foods, with the aim of improving the health status of consumers all around the world. Various epidemiological and clinical studies have demonstrated the salutary role of eicosapentaenoic acid (EPA, 22:6 n-3) and docosahexaenoic acid (DHA, 22:5 n-3) in preventing diseases and reducing mortality from cardiovascular diseases. The unsaturated nature of bioactive lipids leads to susceptibility to oxidation under environmental conditions. Oxidative deterioration of omega-3 fatty acids can cause the reduction in their nutritional quality and sensory properties. Encapsulation of these fatty acids could create a barrier against reaction with harmful environmental factors. Currently, fortification of foods containing bioactive omega-3 fatty acids has found great application in the food industries of different countries. Previous studies have suggested that nano-encapsulation has significant effects on the stability of physical and chemical properties of bioactive compounds. Considering the functional role of omega-3 fatty acids, this study has provided a literature review on applications of nanoliposomal delivery systems for encapsulation of these bioactive compounds.
References
Anderson AS. Fish-risks and benefits. J Hum Nutr Diet. 2004; 17(5): 411-2. doi: 10.1111/j.1365- 277X.2004.00558.x. PMID: 15357693
Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv
Nutr. 2012; 3(1): 1-7. doi: 10.3945/an.111.000893, PMID: 22332096.
Elizondo E, Moreno E, Cabrera I, Cordoba A, Sala S, Veciana J, et al. Liposomes and other vesicular
systems: structural characteristics, methods of preparation, and use in nanomedicine. Prog Mol Biol Transl
Sci. 2010; 104: 1-52. doi: 10.1016/B978-0-12-416020-0.00001-2, PMID: 22093216.
Nicholson T, Khademi H, Moghadasian MH. The role of marine n-3 fatty acids in improving
cardiovascular health: a review. Food Funct. 2013; 4(3): 357-65. doi: 10.1039/c2fo30235g, PMID:
Crepet A, Tressou J, Verger P, Leblanc JC. Management options to reduce exposure to methyl mercury
through the consumption of fish and fishery products by the French population. Regul Toxicol Pharmacol.
; 42(2): 179-89. doi: 10.1016/j.yrtph.2005.03.006, PMID: 15882918.
Von Schacky C. The Omega-3 Index as a risk factor for cardiovascular diseases. Prostaglandins Other
Lipid Mediat. 2011; 96(1-4): 94-8. doi: 10.1016/j.prostaglandins.2011.06.008, PMID: 21726658.
Reza Mozafari M, Johnson C, Hatziantoniou S, Demetzos C. Nanoliposomes and their applications in food
nanotechnology. J Liposome Res. 2008; 18(4): 309-27. doi: 10.1080/08982100802465941, PMID:
Siriwardhana N, Kalupahana NS, Moustaid-Moussa N. Health benefits of n-3 polyunsaturated fatty acids:
eicosapentaenoic acid and docosahexaenoic acid. Adv Food Nutr Res. 2012; 65: 211-22. doi:
1016/B978-0-12-416003-3.00013-5, PMID: 22361189.
Zuidam N, Nedovic V. Encapsulation Technologies for Active Food Ingredients and Food Processing,©
Springer Science+ Business Media. LLC. 2010.1-400. doi: 10.1007/978-1-4419-1008-0.
Brandl M. Liposomes as drug carriers: A technological approach. Biotechnol Annu Rev. 2001; 7: 59-85.
doi: 10.1016/S1387-2656(01)07033-8, PMID: 11686049.
Khan MA, Shahidi F. Tocopherols and phospholipids enhance the oxidative stability of borage and evening
primrose triacylglycerols. J Food Lipids. 2000; 7(3): 143-50. doi: 10.1111/j.1745-4522.2000.tb00167.x.
Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001; 6(1):
-77. doi: 10.1016/S1359-0294(00)00090-X.
Lasic DD. Liposomes: from physics to applications: Elsevier Science Ltd; 1993.
Rasti B, Jinap S, Mozafari M, Yazid A. Comparative study of the oxidative and physical stability of
liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari
methods. Food chem. 2012; 135(4): 2761-70. doi: 10.1016/j.foodchem.2012.07.016, PMID: 22980870.
Heurtault B, Saulnier P, Pech B, Proust J-E, Benoit J-P. Physico-chemical stability of colloidal lipid
particles. Biomaterials. 2003; 24(23): 4283-300. doi: 10.1016/S0142-9612(03)00331-4, PMID: 12853260.
Wallace J, McCabe A, Robson P, Keogh M, Murray C, Kelly P, et al. Bioavailability of n-3
polyunsaturated fatty acids (PUFA) in foods enriched with microencapsulated fish oil. Ann Nutr Metab.
; 44(4): 157-62, PMID: 11111130.
Shahidi F, Finley JW. Omega-3 fatty acids: chemistry, nutrition, and health effects: American Chemical
Society; 2001.
Baum SJ, Kris-Etherton PM, Willett WC, Lichtenstein AH, Rudel LL, Maki KC, et al. Fatty acids in
cardiovascular health and disease: a comprehensive update. J Clin Lipidol. 2012; 6(3): 216-34. doi:
1016/j.jacl.2012.04.077, PMID: 22658146.
Rogers LK, Valentine CJ, Keim SA. DHA supplementation: current implications in pregnancy and
childhood. Pharmacol Res. 2013; 70(1): 13-9. doi: 10.1016/j.phrs.2012.12.003, PMID: 23266567, PMCID:
PMC3602397.
Kamal-Eldin A. Lipid oxidation pathways: AOCS Press; 2003.
Belitz H, Grosch W, Schieberle P, Burghagen M. Food Chemistry, Springer; 1071 p. ISBN: 3540408185.
doi: 10.1007/978-3-540-69934-7.
De Lorgeril M, Salen P. New insights into the health effects of dietary saturated and omega-6 and omega-3
polyunsaturated fatty acids. BMC med. 2012; 10(1): 50. doi: 10.1186/1741-7015-10-50, PMID: 22613931,
PMCID: PMC3394202.
Jafari SM, Assadpoor E, He Y, Bhandari B. Encapsulation efficiency of food flavours and oils during spray
drying. Drying Technology. 2008; 26(7): 816-35. doi: 10.1080/07373930802135972.
Fathi M, Mozafari M, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery
systems. Trends Food Sci Tech. 2012; 23(1): 13-27. doi: 10.1016/j.tifs.2011.08.003.
Desai KGH, Jin Park H. Recent developments in microencapsulation of food ingredients. Drying
technology. 2005; 23(7): 1361-94. doi: 10.1081/DRT-200063478.
Arab-Tehrany E, Jacquot M, Gaiani C, Imran M, Desobry S, Linder M. Beneficial effects and oxidative
stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci Tech. 2012; 25(1): 24-33. doi:
1016/j.tifs.2011.12.002.
Patel A, Velikov KP. Colloidal delivery systems in foods: A general comparison with oral drug delivery.
LWT-Food Sci Technol. 2011; 44(9): 1958-64. doi: 10.1016/j.lwt.2011.04.005.
Olson F, Hunt C, Szoka F, Vail W, Papahadjopoulos D. Preparation of liposomes of defined size
distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta. 1979; 557(1): 9-23.
1016/0005-2736(79)90085-3, PMID: 95096.
Taylor TM, Davidson PM, Bruce BD, Weiss J. Ultrasonic spectroscopy and differential scanning
calorimetry of liposomal-encapsulated nisin. J Agric Food Chem. 2005; 53(22): 8722-8. doi:
1021/jf050726k, PMID: 16248577.
Mozafari MR. Nanocarrier technologies: frontiers of nanotherapy: Springer; 2006.
Perrie Y, Pharmaceutics TR. Drug delivery & targeting. London: Pharmaceutical Press; 2010.
Torchilin V, Weissig V. Liposomes: A practical approach: Oxford University Press; 2003.
Meure LA, Foster NR, Dehghani F. Conventional and dense gas techniques for the production of
liposomes: a review. AAPS PharmSciTech. 2008; 9(3): 798-809. doi: 10.1208/s12249-008-9097-x, PMID:
, PMCID: PMC2977034.
Balon K, Riebesehl B, Müller B. Drug liposome partitioning as a tool for the prediction of human passive
intestinal absorption. Pharm Res. 1999; 16(6): 882-8. doi: 10.1023/A: 1018882221008, PMID: 10397609.
Hem S, Feldkamp J, White J. Basic chemical principles related to emulsion and suspension dosage forms.
The theory and practice of industrial pharmacy, Lachman, L, Lieberman, HA, Kanig, JL, Editors. 1986:
-22.
Nutan MT, Reddy IK. General principles of suspensions. Pharmaceutical Suspensions: Springer; 2010. p.
-65.
Lichtenberg D, Barenholz Y. Liposomes: preparation, characterization, and preservation. Methods
Biochem Anal. 1988; 33: 337-462. PMID: 3282152.
Basu SC, Basu M. Liposome methods and protocols: Springer Science & Business Media; 2002.
Schnitzer E, Pinchuk I, Lichtenberg D. Peroxidation of liposomal lipids. Eur Biophys J. 2007; 36(4-5):
-515. doi: 10.1007/s00249-007-0146-2, PMID: 17380326.
Konings AW. Lipid peroxidation in liposomes. Liposome technology. 1984; 1: 139-61.
Drusch S, Regier M, Bruhn M. Recent advances in the microencapsulation of oils high in polyunsaturated
fatty acids. Novel Technologies in Food Science: Springer; 2012. p. 159-81.
Nara E, Miyashita K, Ota T, Nadachi Y. The Oxidative Stabilities of Polyunsaturated Fatty Acids in
Salmon Egg Phosphatidylcholine Liposomes. Fisheries science. 1998; 64(2): 282-6.
Nacka F, Cansell M, Gouygou J-P, Gerbeaud C, Méléard P, Entressangles B. Physical and chemical
stability of marine lipid-based liposomes under acid conditions. Colloids Surf B Biointerfaces. 2001; 20(3):
-66. doi: 10.1016/S0927-7765(00)00205-8.
Nacka F, Cansell M, Méléard P, Combe N. Incorporation of α-tocopherol in marine lipid-based liposomes:
in vitro and in vivo studies. Lipids. 2001; 36(12): 1313-20. doi: 10.1016/S0927-7765(00)00205-8.
Moussaoui N, Cansell M, Denizot A. Marinosomes, marine lipid-based liposomes: physical
characterization and potential application in cosmetics. Int J Pharm. 2002; 242(1): 361-5. doi:
1016/S0378-5173(02)00217-X, PMID: 12176280.
Cansell M, Nacka F, Combe N. Marine lipid-based liposomes increase in vivo FA bioavailability. Lipids.
; 38(5): 551-9. doi: 10.1007/s11745-003-1341-0. PMID: 12880112.
Lyberg A-M, Fasoli E, Adlercreutz P. Monitoring the oxidation of docosahexaenoic acid in lipids. Lipids.
; 40(9): 969-79. doi: 10.1007/s11745-005-1458-1, PMID: 16329470.
Onuki Y, Morishita M, Chiba Y, Tokiwa S, Takayama K. Docosahexaenoic acid and eicosapentaenoic acid
induce changes in the physical properties of a lipid bilayer model membrane. Chem Pharm Bull. 2006;
(1): 68-71. doi: 10.1248/cpb.54.68, PMID: 16394552.
Namani T, Ishikawa T, Morigaki K, Walde P. Vesicles from docosahexaenoic acid. Colloids Surf B
Biointerfaces. 2007; 54(1): 118-23. doi: 10.1016/j.colsurfb.2006.05.022, PMID: 16829059.
Shaw LA, McClements DJ, Decker EA. Spray-dried multilayered emulsions as a delivery method for
omega-3 fatty acids into food systems. J Agric Food Chem. 2007; 55(8): 3112-9. doi: 10.1021/jf063068s,
PMID: 17371041.
Barrow CJ, Nolan C, Holub BJ. Bioequivalence of encapsulated and microencapsulated fish-oil
supplementation. J Funct Foods. 2009; 1(1): 38-43. doi: 10.1016/j.jff.2008.09.006.
Sarpietro MG, Rocco F, Micieli D, Giuffrida MC, Ottimo S, Castelli F. Absorption of omega-3 fatty acids
by biomembrane models studied by differential scanning calorimetry. Thermochimica Acta. 2010; 503: 55- 60. doi: 10.1016/j.tca.2010.03.007.
Karthik P, Anandharamakrishnan C. Microencapsulation of docosahexaenoic acid by spray-freeze-drying
method and comparison of its stability with spray-drying and freeze-drying methods. Food and Bioprocess
Technology. 2013; 6(10): 2780-90. doi: 10.1007/s11947-012-1024-1.
Hadian Z, Sahari MA, Moghimi HR, Barzegar M. Formulation, characterization and optimization of
liposomes containing eicosapentaenoic and docosahexaenoic acids; A methodology approach. Iran J Pharm
Res. 2014; 13(2): 393-404. PMID: 25237335, PMCID: PMC4157015.
Published
Issue
Section
License
Copyright (c) 2020 KNOWLEDGE KINGDOM PUBLISHING
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.