Detection of Bisphenol A and Nonylphenol in Rat`s Blood Serum, Tissue and Impact on Reproductive System
Keywords:
Bisphenol A (BPA), Nonylphenol (NP), Spermatogenesis, HPLC, Fluorescence detector, ProstateAbstract
Introduction: Bisphenol A (BPA) and Nonylphenol (NP) have estrogen-like activity, and some of their adverse biological effects have been demonstrated. This study was designed to determine the association of plasma and tissue concentrations of BPA and NP and changes in the parameters of the reproductive system in rats.
Methods: Male Wistar rats were administered three doses of BPA and NP (5, 25, and 125 µg/kg) by gavage for 35 consecutive days in 2014-2015, and a 2-ml blood sample was taken from each treated rat. Concentrations of BPA and NP in the blood were determined using the HPLC-fluorescence detection method. The sperm are produced in the epididymis and vas deferens, and they swim up in Ham`s F10 solution, and, then, various parameters were evaluated using an invert microscope, and they included the count, motility, and morphology of the sperm.
Results: The weight of the testes and prostate in the rats receiving BPA and NP treatment showed significant decreases compared to the control group. Similarly, NP created higher concentration than BPA in the serum (e.g., 5.48 ± 0.65 vs. 1.36 ± 0.25, at 125 µg/kg). Compared to the control group, dose-dependent significant decreases in count and motility in the sperm were observed following the administration of BPA (25 and 125 µg/kg) and NP (all three doses). Morphologic aspects of the rats` sperm were changed in various doses of BPA and NP
Conclusions: According to our findings, BPA and NP induced dose-dependent toxic effects on various parameters, i.e., sperm toxicity, weight of the testes, and weight of the prostate gland.
References
Careghini A, Mastorgio AF, Saponaro S, Sezenna E. Bisphenol A, nonylphenols, benzophenones, and
benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res
Int. 2015; 22(8): 5711-41. doi: 10.1007/s11356-014-3974-5. PMID: 25548011, PMCID: PMC4381092.
Vazquez Duhalt R, Marquez Rocha F, Ponce E, Liicea F, Viana MT. Nonylphenol, anintegrated vision of a
pollutant. Applied Ecology and Environmental Research. 2005; 4(1): 1-25. doi: 10.15666/aeer/0401- 001025.
Ben Jonathan N, Steinmetz R. Xenoestrogens: the emerging story of bisphenol a. Trends Endocrinol
Metab. 1998; 9(3): 124-8. PMID: 18406253.
Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS. Components of plastic: experimental
studies in animals and relevance for human health. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1526):
-96. doi: 10.1098/rstb.2008.0281. PMID: 19528057, PMCID: PMC2873015.
Mortazavi S, Bakhtiari AR, Sari AE, Bahramifar N, Rahbarizade F. Phenolic endocrine disrupting
chemicals (EDCs) in Anzali Wetland, Iran: elevated concentrations of 4-nonylphenol, octhylphenol and
bisphenol A. Mar Pollut Bull. 2012; 64(5): 1067-73. doi: 10.1016/j.marpolbul.2012.02.010. PMID:
Recchia AG, Vivacqua A, Gabriele S, Carpino A, Fasanella G, Rago V, et al. Xenoestrogens and the
induction of proliferative effects in breast cancer cells via direct activation of oestrogen receptor alpha.
Food Addit Contam. 2004; 21(2): 134-44. doi: 10.1080/02652030310001641177. PMID: 14754635.
Nakamura D, Yanagiba Y, Duan Z, Ito Y, Okamura A, Asaeda N, et al. Bisphenol A may cause
testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol
Lett. 2010; 194(1-2): 16-25. doi: 10.1016/j.toxlet.2010.02.002. PMID: 20144698.
Xiao Q, Li Y, Ouyang H, Xu P, Wu D. High-performance liquid chromatographic analysis of bisphenol A
and 4-nonylphenol in serum, liver and testis tissues after oral administration to rats and its application to
toxicokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2006; 830(2): 322-9. doi:
1016/j.jchromb.2005.11.024. PMID: 16330262.
Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol A
affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001;
(7): 675-80. PMID: 11485865, PMCID: PMC1240370.
Jin P, Wang X, Chang F, Bai Y, Li Y, Zhou R, et al. Low dose bisphenol A impairs spermatogenesis by
suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats. J Biomed
Res. 2013; 27(2): 135-44. doi: 10.7555/jbr.27.20120076. PMID: 23554804, PMCID: PMC3602871.
Derouiche S, Warnier M, Mariot P, Gosset P, Mauroy B, Bonnal JL, et al. Bisphenol A stimulates human
prostate cancer cell migration via remodelling of calcium signalling. Springerplus. 2013; 2(1): 54. doi:
1186/2193-1801-2-54. PMID: 23450760, PMCID: PMC3581770.
Ho SM, Tang WY, Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol A
increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4
variant 4. Cancer Res. 2006; 66(11): 5624-32. doi: 10.1158/0008-5472.can-06-0516. PMID: 16740699,
PMCID: PMC2276876.
Salian S, Doshi T, Vanage G. Perinatal exposure of rats to Bisphenol A affects the fertility of male
offspring. Life Sci. 2009; 85(21-22): 742-52. doi: 10.1016/j.lfs.2009.10.004. PMID: 19837096.
Gomella GL. Effective Testosterone Suppression for Prostate Cancer: Is There a Best Castration Therapy?
Rev Urol. 2009; 11(2): 52–60. PMID: 19680526, PMCID: PMC2725306.
Timms BG, Howdeshell KL, Barton L, Bradley S, Richter CA, vom Saal FS. Estrogenic chemicals in
plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad
Sci U S A. 2005; 102(19): 7014-9. doi: 10.1073/pnas.0502544102. PMID: 15867144, PMCID:
PMC1088066.
Prins GS, Ye SH, Birch L, Ho SM, Kannan K. Serum bisphenol A pharmacokinetics and prostate
neoplastic responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reprod
Toxicol. 2011; 31(1): 1-9. doi: 10.1016/j.reprotox.2010.09.009. PMID: 20887781, PMCID: PMC3033961.
Chitra KC, Latchoumycandane C, Mathur PP. Induction of oxidative stress by bisphenol A in the
epididymal sperm of rats. Toxicology. 2003; 185(1-2): 119-27. PMID: 12505450.
Tsutsumi S, Yamaguchi Y, Nishida I, Akiyama K, Zakaria MP, Takada H. Alkylbenzenes in mussels from
South and South East Asian coasts as a molecular tool to assess sewage impact. Mar Pollut Bull. 2002;
(1-12): 325-31. PMID: 12398403.
Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in
the human maternal-fetal-placental unit. Environ Health Perspect. 2002; 110(11): 703-7. PMID: 12417499,
PMCID: PMC1241091.
Katayama M, Sasaki T, Matsuda Y, Kaneko S, Iwamoto T, Tanaka M. Sensitive determination of bisphenol
A and alkylphenols by high performance liquid chromatography with pre-column derivatization with 2-(4- carboxyphenyl)-5,6-dimethylbenzimidazole. Biomed Chromatogr. 2001; 15(6): 403-7. doi:
1002/bmc.88. PMID: 11559925.
Kvistad AM, Lundanes E, Greibrokk T. Determination of alkylphenols in water samples by solid-phase
extraction on to poly(styrene-divinylbenzene) and quantification by liquid chromatography with UV- detection. Chromatographia. 1998; 48(9): 707-13. doi: 10.1007/BF02467603.
Aly HA, Domenech O, Banjar ZM. Effect of nonylphenol on male reproduction: analysis of rat epididymal
biochemical markers and antioxidant defense enzymes. Toxicol Appl Pharmacol. 2012; 261(2): 134-41.
doi: 10.1016/j.taap.2012.02.015. PMID: 22421104.
Xiao QW, Li YQ, Zhang H, Liang JL, Wu DS. [Determination of 4-nonylphenol and bisphenol A in rat
serum by high performance liquid chromatography with fluorescence detection]. Sichuan Da Xue Xue Bao
Yi Xue Ban. 2004; 35(2): 271-3, 6. PMID: 15071938.
Miyakoda H, Tabata M, Onodera S, Takeda K. Comparison of Conjugative Activity, Conversion of
Bisphenol A to Bisphenol A Glucuronide, in Fetal and Mature Male Rat. Journal of Health Science. 2000;
(4): 269–74. doi: 10.1248/jhs.46.269.
Jing X, Bing S, Xiaoyan W, Xiaojie S, Yongning W. A study on bisphenol A, nonylphenol, and
octylphenol in human urine amples detected by SPE-UPLC-MS. Biomed Environ Sci. 2011; 24(1): 40-6.
doi: 10.3967/0895-3988.2011.01.005. PMID: 21440838.
McClusky LM, de Jager C, Bornman MS. Stage-related increase in the proportion of apoptotic germ cells
and altered frequencies of stages in the spermatogenic cycle following gestational, lactational, and direct
exposure of male rats to p-nonylphenol. Toxicol Sci. 2007; 95(1): 249-56. doi: 10.1093/toxsci/kfl141.
PMID: 17065434.
Hara Y, Strussmann CA, Hashimoto S. Assessment of short-term exposure to nonylphenol in Japanese
medaka using sperm velocity and frequency of motile sperm. Arch Environ Contam Toxicol. 2007; 53(3):
-10. doi: 10.1007/s00244-006-0172-6. PMID: 17657460.
Jie X, Yang W, Jie Y, Hashim JH, Liu XY, Fan QY, et al. Toxic effect of gestational exposure to
nonylphenol on F1 male rats. Birth Defects Res B Dev Reprod Toxicol. 2010; 89(5): 418-28. doi:
1002/bdrb.20268. PMID: 20922811.
Lahnsteiner F, Berger B, Grubinger F, Weismann T. The effect of 4-nonylphenol on semen quality,
viability of gametes, fertilization success, and embryo and larvae survival in rainbow trout (Oncorhynchus
mykiss). Aquat Toxicol. 2005; 71(4): 297-306. doi: 10.1016/j.aquatox.2004.11.007. PMID: 15710478.
Razia S, Maegawa Y, Tamotsu S, Oishi T. Histological changes in immune and endocrine organs of quail
embryos: exposure to estrogen and nonylphenol. Ecotoxicol Environ Saf. 2006; 65(3): 364-71. doi:
1016/j.ecoenv.2005.07.026. PMID: 16246420.
Wassarman PM. Contribution of mouse egg zona pellucida glycoproteins to gamete recognition during
fertilization. J Cell Physiol. 2005; 204(2): 388-91. doi: 10.1002/jcp.20389. PMID: 15880527.
Published
Issue
Section
License
Copyright (c) 2020 KNOWLEDGE KINGDOM PUBLISHING
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.