Detection of Bisphenol A and Nonylphenol in Rat`s Blood Serum, Tissue and Impact on Reproductive System

Authors

  • Ali Akbar Moghadamnia Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran , Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran

Keywords:

Bisphenol A (BPA), Nonylphenol (NP), Spermatogenesis, HPLC, Fluorescence detector, Prostate

Abstract

Introduction: Bisphenol A (BPA) and Nonylphenol (NP) have estrogen-like activity, and some of their adverse biological effects have been demonstrated. This study was designed to determine the association of plasma and tissue concentrations of BPA and NP and changes in the parameters of the reproductive system in rats. 

Methods: Male Wistar rats were administered three doses of BPA and NP (5, 25, and 125 µg/kg) by gavage for 35 consecutive days in 2014-2015, and a 2-ml blood sample was taken from each treated rat. Concentrations of BPA and NP in the blood were determined using the HPLC-fluorescence detection method. The sperm are produced in the epididymis and vas deferens, and they swim up in Ham`s F10 solution, and, then, various parameters were evaluated using an invert microscope, and they included the count, motility, and morphology of the sperm.  

Results: The weight of the testes and prostate in the rats receiving BPA and NP treatment showed significant decreases compared to the control group. Similarly, NP created higher concentration than BPA in the serum (e.g., 5.48 ± 0.65 vs. 1.36 ± 0.25, at 125 µg/kg). Compared to the control group, dose-dependent significant decreases in count and motility in the sperm were observed following the administration of BPA (25 and 125 µg/kg) and NP (all three doses). Morphologic aspects of the rats` sperm were changed in various doses of BPA and NP 

Conclusions: According to our findings, BPA and NP induced dose-dependent toxic effects on various parameters, i.e., sperm toxicity, weight of the testes, and weight of the prostate gland.

References

Careghini A, Mastorgio AF, Saponaro S, Sezenna E. Bisphenol A, nonylphenols, benzophenones, and

benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res

Int. 2015; 22(8): 5711-41. doi: 10.1007/s11356-014-3974-5. PMID: 25548011, PMCID: PMC4381092.

Vazquez Duhalt R, Marquez Rocha F, Ponce E, Liicea F, Viana MT. Nonylphenol, anintegrated vision of a

pollutant. Applied Ecology and Environmental Research. 2005; 4(1): 1-25. doi: 10.15666/aeer/0401- 001025.

Ben Jonathan N, Steinmetz R. Xenoestrogens: the emerging story of bisphenol a. Trends Endocrinol

Metab. 1998; 9(3): 124-8. PMID: 18406253.

Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS. Components of plastic: experimental

studies in animals and relevance for human health. Philos Trans R Soc Lond B Biol Sci. 2009; 364(1526):

-96. doi: 10.1098/rstb.2008.0281. PMID: 19528057, PMCID: PMC2873015.

Mortazavi S, Bakhtiari AR, Sari AE, Bahramifar N, Rahbarizade F. Phenolic endocrine disrupting

chemicals (EDCs) in Anzali Wetland, Iran: elevated concentrations of 4-nonylphenol, octhylphenol and

bisphenol A. Mar Pollut Bull. 2012; 64(5): 1067-73. doi: 10.1016/j.marpolbul.2012.02.010. PMID:

Recchia AG, Vivacqua A, Gabriele S, Carpino A, Fasanella G, Rago V, et al. Xenoestrogens and the

induction of proliferative effects in breast cancer cells via direct activation of oestrogen receptor alpha.

Food Addit Contam. 2004; 21(2): 134-44. doi: 10.1080/02652030310001641177. PMID: 14754635.

Nakamura D, Yanagiba Y, Duan Z, Ito Y, Okamura A, Asaeda N, et al. Bisphenol A may cause

testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol

Lett. 2010; 194(1-2): 16-25. doi: 10.1016/j.toxlet.2010.02.002. PMID: 20144698.

Xiao Q, Li Y, Ouyang H, Xu P, Wu D. High-performance liquid chromatographic analysis of bisphenol A

and 4-nonylphenol in serum, liver and testis tissues after oral administration to rats and its application to

toxicokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2006; 830(2): 322-9. doi:

1016/j.jchromb.2005.11.024. PMID: 16330262.

Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol A

affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001;

(7): 675-80. PMID: 11485865, PMCID: PMC1240370.

Jin P, Wang X, Chang F, Bai Y, Li Y, Zhou R, et al. Low dose bisphenol A impairs spermatogenesis by

suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats. J Biomed

Res. 2013; 27(2): 135-44. doi: 10.7555/jbr.27.20120076. PMID: 23554804, PMCID: PMC3602871.

Derouiche S, Warnier M, Mariot P, Gosset P, Mauroy B, Bonnal JL, et al. Bisphenol A stimulates human

prostate cancer cell migration via remodelling of calcium signalling. Springerplus. 2013; 2(1): 54. doi:

1186/2193-1801-2-54. PMID: 23450760, PMCID: PMC3581770.

Ho SM, Tang WY, Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol A

increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4

variant 4. Cancer Res. 2006; 66(11): 5624-32. doi: 10.1158/0008-5472.can-06-0516. PMID: 16740699,

PMCID: PMC2276876.

Salian S, Doshi T, Vanage G. Perinatal exposure of rats to Bisphenol A affects the fertility of male

offspring. Life Sci. 2009; 85(21-22): 742-52. doi: 10.1016/j.lfs.2009.10.004. PMID: 19837096.

Gomella GL. Effective Testosterone Suppression for Prostate Cancer: Is There a Best Castration Therapy?

Rev Urol. 2009; 11(2): 52–60. PMID: 19680526, PMCID: PMC2725306.

Timms BG, Howdeshell KL, Barton L, Bradley S, Richter CA, vom Saal FS. Estrogenic chemicals in

plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad

Sci U S A. 2005; 102(19): 7014-9. doi: 10.1073/pnas.0502544102. PMID: 15867144, PMCID:

PMC1088066.

Prins GS, Ye SH, Birch L, Ho SM, Kannan K. Serum bisphenol A pharmacokinetics and prostate

neoplastic responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reprod

Toxicol. 2011; 31(1): 1-9. doi: 10.1016/j.reprotox.2010.09.009. PMID: 20887781, PMCID: PMC3033961.

Chitra KC, Latchoumycandane C, Mathur PP. Induction of oxidative stress by bisphenol A in the

epididymal sperm of rats. Toxicology. 2003; 185(1-2): 119-27. PMID: 12505450.

Tsutsumi S, Yamaguchi Y, Nishida I, Akiyama K, Zakaria MP, Takada H. Alkylbenzenes in mussels from

South and South East Asian coasts as a molecular tool to assess sewage impact. Mar Pollut Bull. 2002;

(1-12): 325-31. PMID: 12398403.

Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in

the human maternal-fetal-placental unit. Environ Health Perspect. 2002; 110(11): 703-7. PMID: 12417499,

PMCID: PMC1241091.

Katayama M, Sasaki T, Matsuda Y, Kaneko S, Iwamoto T, Tanaka M. Sensitive determination of bisphenol

A and alkylphenols by high performance liquid chromatography with pre-column derivatization with 2-(4- carboxyphenyl)-5,6-dimethylbenzimidazole. Biomed Chromatogr. 2001; 15(6): 403-7. doi:

1002/bmc.88. PMID: 11559925.

Kvistad AM, Lundanes E, Greibrokk T. Determination of alkylphenols in water samples by solid-phase

extraction on to poly(styrene-divinylbenzene) and quantification by liquid chromatography with UV- detection. Chromatographia. 1998; 48(9): 707-13. doi: 10.1007/BF02467603.

Aly HA, Domenech O, Banjar ZM. Effect of nonylphenol on male reproduction: analysis of rat epididymal

biochemical markers and antioxidant defense enzymes. Toxicol Appl Pharmacol. 2012; 261(2): 134-41.

doi: 10.1016/j.taap.2012.02.015. PMID: 22421104.

Xiao QW, Li YQ, Zhang H, Liang JL, Wu DS. [Determination of 4-nonylphenol and bisphenol A in rat

serum by high performance liquid chromatography with fluorescence detection]. Sichuan Da Xue Xue Bao

Yi Xue Ban. 2004; 35(2): 271-3, 6. PMID: 15071938.

Miyakoda H, Tabata M, Onodera S, Takeda K. Comparison of Conjugative Activity, Conversion of

Bisphenol A to Bisphenol A Glucuronide, in Fetal and Mature Male Rat. Journal of Health Science. 2000;

(4): 269–74. doi: 10.1248/jhs.46.269.

Jing X, Bing S, Xiaoyan W, Xiaojie S, Yongning W. A study on bisphenol A, nonylphenol, and

octylphenol in human urine amples detected by SPE-UPLC-MS. Biomed Environ Sci. 2011; 24(1): 40-6.

doi: 10.3967/0895-3988.2011.01.005. PMID: 21440838.

McClusky LM, de Jager C, Bornman MS. Stage-related increase in the proportion of apoptotic germ cells

and altered frequencies of stages in the spermatogenic cycle following gestational, lactational, and direct

exposure of male rats to p-nonylphenol. Toxicol Sci. 2007; 95(1): 249-56. doi: 10.1093/toxsci/kfl141.

PMID: 17065434.

Hara Y, Strussmann CA, Hashimoto S. Assessment of short-term exposure to nonylphenol in Japanese

medaka using sperm velocity and frequency of motile sperm. Arch Environ Contam Toxicol. 2007; 53(3):

-10. doi: 10.1007/s00244-006-0172-6. PMID: 17657460.

Jie X, Yang W, Jie Y, Hashim JH, Liu XY, Fan QY, et al. Toxic effect of gestational exposure to

nonylphenol on F1 male rats. Birth Defects Res B Dev Reprod Toxicol. 2010; 89(5): 418-28. doi:

1002/bdrb.20268. PMID: 20922811.

Lahnsteiner F, Berger B, Grubinger F, Weismann T. The effect of 4-nonylphenol on semen quality,

viability of gametes, fertilization success, and embryo and larvae survival in rainbow trout (Oncorhynchus

mykiss). Aquat Toxicol. 2005; 71(4): 297-306. doi: 10.1016/j.aquatox.2004.11.007. PMID: 15710478.

Razia S, Maegawa Y, Tamotsu S, Oishi T. Histological changes in immune and endocrine organs of quail

embryos: exposure to estrogen and nonylphenol. Ecotoxicol Environ Saf. 2006; 65(3): 364-71. doi:

1016/j.ecoenv.2005.07.026. PMID: 16246420.

Wassarman PM. Contribution of mouse egg zona pellucida glycoproteins to gamete recognition during

fertilization. J Cell Physiol. 2005; 204(2): 388-91. doi: 10.1002/jcp.20389. PMID: 15880527.

Published

2022-03-07

Issue

Section

Articles