Phenol Removal from Aqueous Environment by Adsorption onto Pomegranate Peel Carbon

Authors

  • Hamed Biglari M.Sc. of Environmental Health, Senior Lecturer, Department of Environmental Health Engineering, School of Public Health, Social Development & Health Promotion Research Center, Gonabad University of Medical Science, Gonabad, Iran

Keywords:

Adsorption, Aqueous solution, Pomegranate peel, Activated carbon, Freundlich, Langmuir isotherm

Abstract

Introduction: Phenol and its derivatives are the most common poisonous compounds which are stable in aqueous media and lead to many health issues. In this study, application of the carbon resulted from pomegranate peel is investigated in removal of phenol by adsorption method.

Methods: to perform this cross-sectional study, first, samples of phenol with concentrations of 10 to 100 mg/L were prepared for six months in 2016. Then, the impacts of parameters such as pH, adsorbent dosage, contact time, and initial concentration of phenol in adsorption process were investigated independently in Gonabad Chemistry Lab using a spectrophotometer at 505 nm as the wavelength. Furthermore, adherence of the samples to the isotherm models of Langmuir and Freundlich was determined by Excel 2016 and descriptive statistical methods were then reported.

Results: The obtained results demonstrated a maximum adsorption capacity (ash) of 148.38 mgg-1 at pH 7, initial concentration of 100 mg L-1, and temperature of 23 ± 2 ˚C. The phenol removal rate was found to correlate directly to the adsorbent dosage and contact time, and inversely to the initial concentration of phenol. In addition, the investigations showed that the adsorption of phenol on the pomegranate peel ash follows the Freundlich model well with a correlation coefficient of R2 0.9056.

Conclusion: Pomegranate peel ash could be used as an efficient and low-cost adsorbent for phenol removal from aqueous media.

 

References

Rappoport Z. The Chemistry of Phenols, John Wiley & Sons, Ltd. 2003. doi: 10.1002/0470857277.

Pan G, Kurumada KI. Hybrid gel reinforced with coating layer for removal of phenol from aqueous solution.

Chemical Engineering Journal. 2008; 138(1-3): 194-9. doi: 10.1016/j.cej.2007.06.025.

Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: a

short review of recent developments. J Hazard Mater. 2008; 160(2-3): 265-88. doi:

1016/j.jhazmat.2008.03.045. PMID: 18455866.

Ersöz A, Denizli A, Şener İ, Atılır A, Diltemiz S, Say R. Removal of phenolic compounds with nitrophenolimprinted polymer based on π–π and hydrogen-bonding interactions. Separation and purification technology.

; 38(2): 173-9. doi: 10.1016/j.seppur.2003.11.004.

Kinsley C, Nicell JA. Treatment of aqueous phenol with soybean peroxidase in the presence of polyethylene

glycol. Bioresource Technology. 2000; 73(2): 139-46. doi: 10.1016/S0960-8524(99)00151-0.

Karel V. Handbook of environmental data on organic chemicals. 2000; 2. John Wiley and Sons Inc, Canada.

Raynold J E F. Martindale the extra,pharmacopocia disinfectants and antiseptics, 1982, 28th Ed. landan. 570- 2.

Jalali M, Nikravesh MR. The Study of Phenol Interventional Effects on Mouse Organogenesis.

Pharmaceutical Sciences. 2001; 18(1): 15-22.

Mohammadi AS, Mohammadi G. 4-Chlorophenol oxidation combined with the application of advanced

oxidation technology and the modified microwave in chemical and petrochemical wastewater industry.

Proceedings of the 1th Iranian Petrochemical Conference. 2008. 2008: 194.

Rengaraj S, Moon SH, Sivabalan R, Arabindoo B, Murugesan V. Removal of phenol from aqueous solution

and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat. J Hazard Mater.

; 89(2-3): 185-96. doi: 10.1016/s0304-3894(01)00308-9. PMID: 11744204.

Bódalo A, Gómez E, Hidalgo AM, Gómez M, Murcia MD, López I. Nanofiltration membranes to reduce

phenol concentration in wastewater. Desalination. 2009; 245(1): 680-6. doi: 10.1016/j.desal.2009.02.037.

Aksu Z, Yener J. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various

sorbents. Waste Manag. 2001; 21(8): 695-702. PMID: 11699627.

Viraraghavan T, de Maria Alfaro F. Adsorption of phenol from wastewater by peat, fly ash and bentonite.

Journal of Hazardous Materials. 1998; 57(1-3): 59-70. doi: 10.1016/S0304-3894(97)00062-9.

Balasubramanian A, Venkatesan S. Removal of phenolic compounds from aqueous solutions by emulsion

liquid membrane containing ionic liquid [BMIM]+[PF 6]-in tributyl phosphate. Desalination. 2012; 289(15):

-34. doi: 10.10 16/j. desal.20 11.12.027.

Bazrafshan E, Biglari H, Mahvi AH. Phenol removal by electrocoagulation process from aqueous solutions.

Fresenius Environmental Bulletin. 2012; 21(2): 364-71.

Biglari H, Bazrafshan E. Phenol removal from synthetic aqueous environment by electrochemical process

using iron and aluminum electrodes. Iranian Journal of Health & Environment. 2011; 4(5): 531-42.

Li HQ, Han HJ, Du MA, Wang W. Removal of phenols, thiocyanate and ammonium from coal gasification

wastewater using moving bed biofilm reactor. Bioresource technology. 2011; 102(7): 4667-73. doi:

1016/j.biortech.2011.01.029. PMID: 21320775.

Jamshidi N, Torabian A, Azimi A, NabiBidhendi GR, Jafarzadeh MT. Investigation of phenol removal in

aqueous solutions using advanced photochemical oxidation (APO). J of Water and Wastewater. 2009; 72:

-9.

Li X, Chen S, Fan X, Quan X, Tan F, Zhang Y, Gao J. Adsorption of ciprofloxacin, bisphenol and 2- chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon. J Colloid

Interface Sci. 2015; 447: 120-7. doi: 10.1016/j.jcis.2015.01.042. PMID: 25702869.

Rodrigues LA, da Silva ML, Alvarez-Mendes MO, dos Reis Coutinho A, Thim GP. Phenol removal from

aqueous solution by activated carbon produced from avocado kernel seeds. Chemical Engineering Journal.

; 174(1): 49-57. doi: 10.1016/j.cej.2011.08.027.

Suresh S, Srivastava VC, Mishra IM. Adsorptive removal of phenol from binary aqueous solution with

aniline and 4-nitrophenol by granular activated carbon. Chemical engineering journal. 2011; 171(3): 997- 1003. doi: 10.1016/j.cej.2011.04.050.

El-Naas MH, Al-Zuhair S, Alhaija MA. Reduction of COD in refinery wastewater through adsorption on

date-pit activated carbon. J Hazard Mater. 2010; 173(1-3): 750-7. doi: 10.1016/j.jhazmat.2009.09.002.

PMID: 19783364.

Senturk HB, Ozdes D, Gundogdu A, Duran C, Soylak M. Removal of phenol from aqueous solutions by

adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal

of Hazardous Materials. 2009; 172(1): 353-62. doi: 10.1016/j.jhazmat.2009.07.019. PMID: 19656623.

Hameed BH, Rahman AA. Removal of phenol from aqueous solutions by adsorption onto activated carbon

prepared from biomass material. J Hazard Mater. 2008; 160(2): 576-81. doi: 10.1016/j.jhazmat.2008.03.028.

PMID: 18434009.

Özkaya B. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models.

J Hazard Mater. 2006; 129(1-3): 58-63. doi: 10.1016/j.jhazmat.2005.08.025. PMID: 16198050.

Stavropoulos GG, Samaras P, Sakellaropoulos GP. Effect of activated carbons modification on porosity,

surface structure and phenol adsorption. Journal of Hazardous Materials. 2008; 151(2): 414-21. doi:

1016/j.jhazmat.2007.06.005. PMID: 17644248.

Alkaram UF, Mukhlis AA, Al-Dujaili AH. The removal of phenol from aqueous solutions by adsorption

using surfactant-modified bentonite and kaolinite. J Hazard Mater. 2009; 169(1-3): 324-32. doi:

1016/j.jhazmat.2009.03.153. PMID: 19464105.

Ming ZW, Long CJ, Cai PB, Xing ZQ, Zhang B. Synergistic adsorption of phenol from aqueous solution

onto polymeric adsorbents. Journal of hazardous materials. 2006; 128(2-3): 123-9. doi:

1016/j.jhazmat.2005.03.036. PMID: 16457950.

Yousef RI, El-Eswed B. The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite.

Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009; 334(1-3): 92-9. doi:

1016/j.colsurfa.2008.10.004.

Saitoh T, Asano K, Hiraide M. Removal of phenols in water using chitosan-conjugated thermo-responsive

polymers. J Hazard Mater. 2011; 185(2-3): 1369-73. doi: 10.1016/j.jhazmat.2010.10.057. PMID: 21074940.

Dursun AY, Kalayci CS. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto

chitin. J Hazard Mater. 2005; 123(1-3): 151-7. doi: 10.1016/j.jhazmat.2005.03.034. PMID: 15993297.

Lin K, Pan J, Chen Y, Cheng R, Xu X. Study the adsorption of phenol from aqueous solution on

hydroxyapatite nanopowders. J Hazard Mater. 2009; 161(1): 231-40. doi: 10.1016/j.jhazmat.2008.03.076.

PMID: 18573599.

Glesceria LA, Greenberg E, Eaton AD. Standardmethods for the examination of water and wastewater. 31st

ed. Washington DC: APHA, 2005.

Rasoulifard MH, Qazvini NT, Farhangnia E, Heidari A, Mohamadi SD. Removal of direct yellow 9 and

reactive orange 122 from contaminated water using chitosan as a polymeric bioadsorbent by adsorption

process. J Color Sci Tech. 2010; 4(1): 17-23.

Rengaraj S, Moon SH, Sivabalan R, Arabindoo B, Murugesan V. Agricultural solid waste for the removal of

organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manag.

; 22(5): 543-8. doi: 10.1016/S0956-053X(01)00016-2. PMID: 12092764.

Chakravarty P, Sarma NS, Sarma HP. Removal of lead (II) from aqueous solution using heartwood of Areca

catechu powder. Desalination. 2010; 256(1): 16-21. doi: 10.1016/j.desal.2010.02.029.

Calvete T, Lima EC, Cardoso NF, Dias SL, Pavan FA. Application of carbon adsorbents prepared from the

Brazilian pine-fruit-shell for the removal of Procion Red MX 3B from aqueous solution-Kinetic, equilibrium,

and thermodynamic studies. J Environ Manage. 2009; 91(8): 1695-706. doi: 10.1016/j.jenvman.2010.03.013.

PMID: 20398999.

Cengiz S, Cavas L. Removal of methylene blue by invasive marine seaweed: Caulerparacemosa var.

cylindracea. Bioresour Technol. 2008; 99(7): 2357-63. doi: 10.1016/j.biortech.2007.05.011. PMID:

SenthilKumar P, Ramalingam S, Sathyaselvabala V, Kirupha SD, Sivanesan S. Removal of copper (II) ions

from aqueous solution by adsorption using cashew nut shell. Desalination. 2011; 266(1-3): 63-71. doi:

1016/j.desal.2010.08.003.

Caturla F, Martin-Martinez JM, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. Adsorption of

substituted phenols on activated carbon. Journal of colloid and interface science. 1988; 124(2): 528-34. doi:

1016/0021-9797(88)90189-0.

Imagawa A, Seto R, Nagaosa Y. Adsorption of chlorinated hydrocarbons from air and aqueous solutions by

carbonized rice husk. Carbon. 2000; 38(4): 628-30. doi: 10.1016/S0008-6223(00)00006-3.

Nayak PS, Singh BK. Removal of phenol from aqueous solutions by sorption on low cost clay. Desalination.

; 207(1-3): 71-9. doi: 10.1016/j.desal.2006.07.005.

Bhatnagar A. Removal of bromophenols from water using industrial wastes as low cost adsorbents. J Hazard

Mater. 2007; 139(1): 93-102. doi: 10.1016/j.jhazmat.2006.06.139. PMID: 16938394.

Karaoğlu MH, Doğan M, Alkan M. Removal of cationic dyes by kaolinite. Microporous and Mesoporous

Materials. 2009; 122(1-3): 20-7. doi: 10.1016/j.micromeso.2009.02.013.

Tsai WT, Hsu HC, Su TY, Lin KY, Lin CM. Removal of basic dye (methylene blue) from wastewaters

utilizing beer brewery waste. Journal of Hazardous Materials. 2008; 154(1-3): 73-8. doi:

1016/j.jhazmat.2007.09.107. PMID: 18006225.

Cruz CC, da Costa AC, Henriques CA, Luna AS. Kinetic modeling and equilibrium studies during cadmium

biosorption by dead Sargassum sp. biomass. Bioresour Technol. 2004; 91(3): 249-57. doi: 10.1016/S0960- 8524(03)00194-9. PMID: 14607484.

Yarmohammadi H, Hamidvand E, Abdollahzadeh D, Sohrabi Y, Poursadeghiyan M, Biglari H, et al.

Measuring concentration of welding fumes in respiratory zones of welders: An ergo-toxicological approach.

Research Journal of Medical Sciences. 2016; 10(3): 111-5. doi: 10.3923/rjmsci.2016.111.115.

Biglari H, Sohrabi Y, Charganeh SS, Dabirian M, Javan N. Surveying the geographical distribution of

aluminium concentration in groundwater resources of sistan and baluchistan, Iran. Research Journal of

Medical Sciences. 2016; 10(4): 351-4. doi: 10.3923/rjmsci.2016.351.354.

Yarmohammadi H, Poursadeghiyan M, Shorabi Y, Ebrahimi MH, Rezaei G, Biglari H, et al. Risk assessment

in a wheat winnowing factory based on ET and BA method. Journal of Engineering and Applied Sciences.

; 11(3): 334-8. doi: 10.3923/jeasci.2016.334.338.

Biglari H, Chavoshani A, Javan N, Hossein Mahvi A. Geochemical study of groundwater conditions with

special emphasis on fluoride concentration, Iran. Desalination and Water Treatment. 2016; 47(57): 1-8. doi:

1080/19443994.2015.1133324.

Alipour V, Dindarloo K, Mahvi AH, Rezaei L. Evaluation of corrosion and scaling tendency indices in water

distribution system: a case study of Torbat Heydariye, Iran. J Water Health. 2015; 13(1): 203-9. doi:

2166/wh.2014.157. PMID: 25719479.

Published

2022-03-08