Safety of Nanotechnology in Food Industries

Authors

  • Seyed Mohammad Amini

Keywords:

food-processing industry, food safety, nanotechnology

Abstract

The arrival of nanotechnology in various industries has been so rapid and widespread because of its wide-ranging applications in our daily lives. Nutrition and food service is one of the biggest industries to be affected by nanotechnology in all areas, changing even the nature of food itself. Whether it’s farming, food packaging, or the prevention of microbial contamination the major food industries have seen dramatic changes because of nanotechnology. Different nanomaterials such as nanopowders, nanotubes, nano-fibers, quantum dots, and metal and metal-oxide nanoparticles are globally produced in large quantities due to their broad applicability in food-related industries. Because of the unique properties of nanostructures and nanomaterials – such as a large surface area, high activity, and small size, there is some concern about the potential for harmful adverse effects of used nanomaterials on health or the environment. However, because of tremendous advances in different industries, this concern may be unnecessary. This paper presents some uses of nanomaterials in food and related industries and their possible side-effects. This review covers the various aspects of nanomaterials and their impact on human exposure, safety, and environmental concerns.

References

Moraru CI, Panchapakesan CP, Huang Q, Takhistov P, SEAN L, Kokini JL. Nanotechnology: a newfrontier in food science. Food Technol-Chicago. 2003;57(12): 24-9.2.Shand H, Wetter KJ. Shrinking science: an introduction to nanotechnology. State of the World. 2006;23;1:783.Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol.2003;21(10):1166-70,doi:10.1038/nbt8754.Scrinis G. On the ideology of nutritionism. JSTOR. 2008;8(1): 39-48.5.Taghavi SM, Momenpour M, Azarian M, Ahmadian M, Souri F, Taghavi SA, et al. Effects ofNanoparticles on the Environment andOutdoor Workplaces. Electron. Physician, 2013; 5(4): 706-12, doi:10.14661/2013.706-7126.Dowling A, Clift R, Grobert N, Hutton D, Oliver R, O’neill O, et al. Nanoscience and nanotechnologies:opportunities and uncertainties. London: The Royal Society & TheRoyal Academy of Engineering Report.2004:61-4.7.Miller G, Senjen R. Out of the Laboratory and onto our Plates: Nanotechnology in Food & Agriculture. Areport prepared for Friends of the Earth Australia. Friends of the Earth Europe and Friends of the EarthUnited States and supported by Friends of the Earth Germany Friends of the Earth AustraliaNanotechnology Project, Australia. 2008.8.Hett A. Nanotechnology: Small Matter, Many Unknowns. Zurich: Swiss Reinsurance Company. 2004.9.Bowman DM, Fitzharris M. Toosmall for concern? Public health and nanotechnology. AUST NZ J PUBLHEAL. 2007;31(4):382-4,doi:10.1111/j.1753-6405.2007.00092.x10.Bowman DM, Hodge GA. Nanotechnology and public interest dialogue: some international observations.Bulletin of Science, Te chnology & Society. 2007;27(2):118-32,doi: 10.1177/027046760629821611.Kuzma J, VerHage P. Nanotechnology in agriculture and food production: Anticipated applications: Projecton Emerging Nanotechnologies; 2006.12.Joseph T, Morrison M. Nanotechnology inagriculture and food: a nanoforum report: Nanoforum. org; 2006.13.Scott N, Chen H, Rutzke CJ. Nanoscale Science and Engineering for Agriculture and Food Systems: AReport Submitted to Cooperative State Research, Education and Extension Service, the United StatesDepartment of Agriculture: National Planning Workshop, November 18-19, 2002, Washington, DC:USDA; 2003.14.Teng B-S, Wang C-D, Yang H-J, Wu J-S, Zhang D, Zheng M, et al. A protein tyrosine phosphatase 1Bactivity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potencyon streptozotocin-induced type 2 diabetic miceJ Agr Food Chem. 2011;59(12): 6492-500.15.Seabra AB, Rai M, Durán N. Nano carriers for nitric oxide delivery and its potential applications in plantphysiological process: A mini review. J Plant Biochem Biot. 2013: 1-10,doi:10.1007/s13562-013-0204-z

LIU J, ZHANG Y-d, ZHANG Z-m. The Application Research of Nano-biotechnology to PromoteIncreasing of Vegetable Production. Hubei Agricultural Sciences. 2009;1: 041.17.Eguchi E, Cecato U, Silva S. The way of nanotechnology in Brazil animal production. PUBVET.2013;7(8).18.SERVICE RF. Nanotechnology grows up. Science(Washington, D C). 2004;304(5678): 1732-4,doi:10.1126/science.304.5678.173219.ZhangC, Ding Y, Ping Q, Yu L. Novelchitosan-derived nanomaterials and their micelle-formingproperties. J Agr Food Chem. 2006;54(22): 8409-16,DOI: 10.1021/jf061541w20.Dingman J, REHS D. Nanotechnology: Its impact on food safety. J Environ Health. 2008;70(6):47-50.21.Tharanathan R. Biodegradable films and composite coatings: past, present and future. Trends Food SCITECH. 2003;14(3): 71-8,doi:10.1016/S0924-2244(02)00280-722.Sothornvit R, Olsen C, McHugh T, Krochta J. Tensile properties of compression-molded whey proteinsheets: determination of molding condition and glycerol-content effects and comparison with solution-castfilms. J Food Eng. 2007;78(3): 855-60,doi:10.1016/j.jfoodeng.2005.12.00223.Sinha Ray S, Okamoto M. New polylactide/layered silicate nanocomposites, 6. Macromol.Mater.Eng.2003;288(12): 936-44,DOI: 10.1002/mame.20030015624.Rhim J-W, Hong S-I, Park H-M, Ng PK. Preparation and characterization of chitosan-based nanocompositefilms with antimicrobial activity.J. Agric. Food Chem., 2006, 54 (16), pp 5814–5822,DOI:10.1021/jf060658h25.Lin C-C, Yeh Y-C, Yang C-Y, Chen C-L, Chen G-F, Chen C-C, et al. Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J. Am. Chem. 2002;124(14): 3508-9,DOI: 10.1021/ja020090326.YangL, Li Y. Simultaneous detectionofEscherichia coli O157∶H7 and Salmonella Typhimurium usingquantum dots as fluorescence labels. Analyst. 2006;131(3): 394-401,DOI: 10.1039/B510888H27.Zhou R, Wang P, Chang HC. Bacteria capture, concentration and detection by alternating currentdielectrophoresis and self‐assembly of dispersed single‐wall carbon nanotubes. Electrophoresis.2006;27(7): 1376-85,DOI: 10.1002/elps.20050032928.Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B. Novel functionalizedcarbon nanotubes for improving the surface properties and performance of polyethersulfone (PES)membrane. Desalination. 2012;286: 99-107,doi:10.1016/j.desal.2011.10.03929.Lam C-w, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity andassessment ofpotential occupational and environmental health risks. Crit Rev Toxicol. 2006;36(3): 189-217,doi: 10.1080/1040844060057023330.Savage N, Diallo MS. Nanomaterials and water purification: opportunities and challenges. . J NanopartRes. 2005;7(4-5): 331-42,DOI: 10.1007/s11051-005-7523-531.Oberdörster G. Pulmonary effects of inhaled ultrafine particles.Int Arch Occ Env Hea.2000;74(1): 1-8,DOI: 10.1007/s00420000018532.Amini SM, Kharrazi S, Hadizadeh M, Fateh M, Saber R. Effect of gold nanoparticles on photodynamicefficiency of 5-aminolevolenic acid photosensitiser in epidermal carcinoma cell line: an in vitro study.Institution of Engineering and Technology [Internet]. Available from: http://digital-library.theiet.org/content/journals/10.1049/IET-NBT.2013.0021.33.Kyung OY, Grabinski CM, SchrandAM, Murdock RC, Wang W, Gu B, et al. Toxicity of amorphous silicananoparticles in mouse keratinocytes. J Nanopart Res. 2009;11(1): 15-24,DOI: 10.1007/s11051-008-9417-934.Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles-potential implications fordrugdelivery. J NANOSCI NANOTECHNO. 2004;4(5): 521-31,DOI: http://dx.doi.org/10.1166/jnn.2004.08135.Murray A, Kisin E, Leonard S, Young S, Kommineni C, Kagan V, et al. Oxidative stress and inflammatoryresponse in dermal toxicity of single-walled carbon nanotubes. Toxicology. 2009;257(3): 161-71,doi:10.1016/j.tox.2008.12.02336.Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, et al. Crystal structuremediates mode of cell death in TiO2 nanotoxicity.J Nanopart Res. 2009;11(6): 1361-74,DOI:10.1007/s11051-008-952337.Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, et al. Cytotoxicity of colloidalCdSe and CdSe/ZnS nanoparticles. Nano Letters. 2005;5(2): 331-8,DOI: 10.1021/nl047996m

Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation,characterization, and cytotoxicity studies. NanoBioscience, IEEE Transactions on. 2004;3(1):66-73,DOI:10.1109/TNB.2003.82027739.El Badawy AM, SilvaRG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependenttoxicity of silver nanoparticles. Environmental science&technology. 2010;45(1): 283-7,DOI:10.1021/es103418840.Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatingsdetermine cytotoxicity andirritation potential of quantum dot nanoparticles in epidermal keratinocytes. JID. 2006;127(1) :143-53,doi:10.1038/sj.jid.570050841.Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Einviron Health. (2001) 74:1-8.42.Salnikow K, Kasprzak KS. Ascorbate depletion: a critical step in nickel carcinogenesis? Environ HealthPersp. 2005;113(5): 577.43.Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, et al. In vitro cytotoxicity of oxidenanoparticles:comparison to asbestos, silica, and the effect of particle solubility. Environ SCI Technol .2006;40(14):4374-81,DOI: 10.1021/es05206944.Li J, Li Q, Xu J, Li J, Cai X, Liu R, et al. Comparative study on the acute pulmonary toxicity induced by 3and 20 nm TiO2 primary particles in mice.Environ Toxicol Pharm. 2007;24(3):239-44,doi:10.1016/j.etap.2007.06.00445.Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving fromstudies of ultrafine particles. Environ Health Persp .2005;113(7):823.46.Maynard AD. Nanotechnology: assessing the risks. Nano Today. 2006;1(2):22-33,doi:10.1016/S1748-0132(06)70045-747.Tsuji JS, Maynard AD, Howard PC, James JT, Lam C-w, Warheit DB, et al. Research strategies for safetyevaluation of nanomaterials, part IV: risk assessment of nanoparticles. Tox SCI. 2006;89(1):42-50,doi:10.1093/toxsci/kfi33948.Suh WH, Suh Y-H, Stucky GD. Multifunctional nanosystems at the interface of physical and life sciences.Nano Today. 2009;4(1):27-36,doi:10.1016/j.nantod.2008.10.01349.Maynard AD, Kuempel ED. Airborne nanostructured particles and occupational health.J Nanopart Res.2005;7(6):587-614,DOI: 10.1007/s11051-005-6770-950.Monteiro-Riviere NA, Inman AO, Zhang L. Limitations and relative utility of screening assays to assessengineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharm. 2009;234(2):222-35,doi:10.1016/j.taap.2008.09.03051.Marquis BJ, Love SA, Braun KL, Haynes CL. Analytical methods to assess nanoparticle toxicity. Analyst.2009;134(3):425-39,DOI: 10.1039/B818082B52.Sayes CM, Reed KL, Subramoney S, AbramsL, Warheit DB. Can in vitro assays substitute for in vivostudies in assessing the pulmonary hazards of fine and nanoscale materials? J Nanopart Res.2009;11(2):421-31,DOI: 10.1007/s11051-008-9471-3

Downloads

Published

2022-03-08