Methicillin-resistant Staphylococcus aureus in air and surfaces of hospital wards
a comparison between new and old buildings
Keywords:
Hospital, Cross Infection, Methicillin-Resistant Staphylococcus aureus, Air Pollution, Environmental MicrobiologyAbstract
Background: Airborne particles that contain Methicillin resistant Staphylococcus aureus (MRSA) can be transferred from hospital air and environmental surfaces. It presents special risks of infections to patients and personnel and imposes exorbitant financial costs and human losses. Objective: This research has been done to determine the prevalence of MRSA in the air and on surfaces of different hospitals wards. Methods: In this cross-sectional study, surfaces and air samples were collected from 12 wards of new and old-building hospitals, following identification of MRSA by detection of pvl, mecA and vanA genes using Polymerase chain reaction (PCR) assay in 2017. Both hospitals are located in the north of Qazvin city (population: 596,932), Iran, with 255 and 230 patients’ beds respectively. Also, some environmental properties of the sampling areas were measured. The data were analyzed using IBM-SPSS version 23, parametric tests and Pearson product-moment correlation. Results: S. aureus and Gram-negative bacteria were detected in 59.6 and 80% of the samples. The Intensive care unit (ICU) with 7.5% MRSA prevalence was the most contaminated ward. S. aureus was detected in 20% of the surface samples while MRSA was isolated in 16.7%. There are positive correlations between bacterial contamination levels of the air, surfaces and the CO2 concentration of the sampling spaces (p<0.0001). Conclusion: According to the findings of this study, air and surfaces of hospitals are contaminated with MRSA. Because of significant correlation between bioaerosol concentration and fomites, to reduce and control prevalence of MRSA, using air cleaning systems as well as decontamination of surfaces is suggested.References
Khan HA, Baig FK, Mehboob R. Nosocomial infections: Epidemiology, prevention, control and
surveillance. Asian Pac J Trop Biomed. 2017;7(5):478-82. DOI: 10.1016/j.apjtb.2017.01.019
Kourtis AP, Hatfield K, Baggs J, Mu Y, See I, Epson E, et al. Vital Signs: Epidemiology and Recent
Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream
Infections—United States. MMWR Morb Mortal Wkly Rep. 2019;68(9):214-22. DOI:
15585/mmwr.mm6809e1. PMid: 30845118, PMCid: PMC6421967
Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections:
epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev.
;28(3):603-61. DOI: 10.1128/CMR.00134-14. PMid: 26016486, PMCid: PMC4451395
Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant
Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033. DOI: 10.1038/nrdp.2018.33. PMid: 29849094
Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution,
and epidemiology. Clin Microbiol Rev. 2018;31(4):e00020-18. DOI: 10.1128/CMR.00020-18. PMid:
, PMCid: PMC6148192
Yaren H, Saygin O, Turaclar N, Vural H, Turhan A, Tuncer E, et al. Investigation of PVL and MecA Gene
Locies in Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Isolated from Nosocomial Samples
of Hospital Patients and Hospital Staff. Genomics and Appl Biol. 2015;6(10):1-6. DOI:
5376/gab.2015.06.0010
Lei H, Jones RM, Li Y. Exploring surface cleaning strategies in hospital to prevent contact transmission of
methicillin-resistant Staphylococcus aureus. BMC Infect Dis. 2017;17(1):85-90. DOI: 10.1186/s12879-
-2120-z. PMid: 28100179, PMCid: PMC5242018
Yuen J, Chung T, Loke A. Methicillin-resistant Staphylococcus aureus (MRSA) contamination in bedside
surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial
polymer surfactant. Int J Environ Res Public Health. 2015;12(3):3026-41. DOI: 10.3390/ijerph120303026.
PMid: 25768241, PMCid: PMC4377950
Loftus RW, Dexter F, Robinson AD. Methicillin-resistant Staphylococcus aureus has greater risk of
transmission in the operating room than methicillin-sensitive S aureus. Am J Infect Control.
;46(5):520-5. DOI: 10.1016/j.ajic.2017.11.002
Mirzaii M, Emaneini M, Jabalameli F, Halimi S, Taherikalani M. Molecular investigation of
Staphylococcus aureus isolated from the patients, personnel, air and environment of an ICU in a hospital in
Tehran. J Infect Public. 2015;8(2):202-6. DOI: 10.1016/j.jiph.2014.09.002. PMid: 25458916
Leylabadlo HE, Pourlak T, Aghazadeh M, Asgharzadeh M, Kafil HS. Extended-spectrum beta-lactamase
producing gram negative bacteria In Iran: A review. Afr J Infect Dis. 2017;11(2):39-53. DOI:
21010/ajid.v11i2.6. PMid: 28670639, PMCid: PMC5476812
Taromian M, Peymani A, Aslanimehr M. Frequency of Fibronectin Binding Protein A and Panton-
Valentine Leukocidin in Methicillin-Resistant Staphylococcus aureus Collected From Educational
Hospitals in Qazvin, Iran. Biotech Health Sci. 2016;3(1): e35939. DOI: 10.17795/bhs-35939
Nazemsadati SS, Allami A, Haj Manoochehri F. Staphylococcus aureus colonization in Qazvin university
hospitals healthcare workers. J Qazvin Univ Med Sci. 2018;22(2):8-19.
Azimi A, Moosavi ME, Peymani A. Phenotypic and Genotypic Characterization of Methicillin and
Erythromycin Resistance in Staphylococcus aureus Collected from Nasal Samples in Qazvin Medical
Students. Iranian Journal of Infectious Diseases And Tropical Medicine. 2019;23(83):55-65.
Alimanesh N, Taheri M, Sadeghi A. Selection from the results of the general population and housing
census of the year 2016. Qazvin: Management and Planning Organization of Qazvin province; 2017 Aug.
p.
Health, Prevention, Dept HS. Niosh Criteria for a Recommended Standard: Occupational Exposure to Heat
and Hot Environments: National Institute on Drug Abuse; 2018.
Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM, O’Sullivan MV, et al. Antibiotic
choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high
vancomycin minimum inhibitory concentrations. J Infect Dis. 2011;204(3):340-7. DOI:
1093/infdis/jir270, PMid: 21742831
Ghahremani M, Jazani NH, Sharifi Y. Emergence of vancomycin-intermediate and-resistant
Staphylococcus aureus among methicillin-resistant S. aureus isolated from clinical specimens in the
northwest of Iran. J Glob Antimicrob Resist. 2018;14:4-9. DOI: 10.1016/j.jgar.2018.01.017. PMid:
Azarian T, Cook RL, Johnson JA, Guzman N, McCarter YS, Gomez N, et al. Whole-genome sequencing
for outbreak investigations of methicillin-resistant Staphylococcus aureus in the neonatal intensive care
unit: time for routine practice? Infect Control Hosp Epidemiol. 2015;36(7):777-85. DOI:
1017/ice.2015.73. PMid: 25998499, PMCid: PMC4507300
de la Gandara MP, Curry M, Berger J, Burstein D, Della-Latta P, Kopetz V, et al. MRSA causing infections
in hospitals in greater metropolitan New York: major shift in the dominant clonal type between 1996 and
PloS one. 2016;11(6):e0156924. DOI: 10.1371/journal.pone.0156924. PMid: 27272665, PMCid:
PMC4896443
Mukhiya R, Shrestha A, Rai S, Pant K, Rai G, Singh R. Methicillin-resistant Staphylococcus aureus in
clinical samples of hospital located in kathmandu valley, Nepal. Res J Pharm Biolo Chem Sci.
;4(2):617-21.
Creamer E, Shore AC, Deasy EC, Galvin S, Dolan A, Walley N, et al. Air and surface contamination
patterns of meticillin-resistant Staphylococcus aureus on eight acute hospital wards. J Hosp Infect.
;86(3):201-8. DOI: 10.1016/j.jhin.2013.12.005. PMid: 24529449
Wagenvoort J, Toenbreker H, Nurmohamed A, Davies B. Transmission of methicillin-
resistantStaphylococcus aureus within a household. Eur J Clin Microbiol Infect Dis. 1997;16(5):399-400.
DOI: 10.1007/BF01726373. PMid: 9228485
Lax S, Gilbert JA. Hospital-associated microbiota and implications for nosocomial infections. Trends Mol
Med. 2015;21(7):427-32. PMID: 25907678 DOI: 10.1016/j.molmed.2015.03.005
Mirhoseini SH, Nikaeen M, Shamsizadeh Z, Khanahmad H. Hospital air: A potential route for transmission
of infections caused by β-lactam–resistant bacteria. Am J Infect Control. 2016;44(8):898-904. DOI:
1016/j.ajic.2016.01.041. PMid: 27021512
van de Sande-Bruinsma N, van Hall MAL, Janssen M, Nagtzaam N, Leenders S, de Greeff SC, et al.
Impact of livestock-associated MRSA in a hospital setting. Antimicrob Resist Infect Control. 2015;4(1):11.
DOI: 10.1186/s13756-015-0053-8. PMID: 25908965, PMCid: PMC4407377
Getchell-White SI, Donowitz LG, Groschel DH. The inanimate environment of an intensive care unit as a
potential source of nosocomial bacteria evidence for long survival of Acinetobacter calcoaceticus. Infect
Control Hosp Epidemiol. 1989;10(9):402-7. DOI: 10.1086/646061. PMid: 2794465
Falagas ME, Skalidis T, Vardakas KZ, Legakis NJ. Activity of cefiderocol (S-649266) against carbapenem-
resistant Gram-negative bacteria collected from inpatients in Greek hospitals. J Antimicrob Chemother.
;72(6):1704-8. DOI: 10.1093/jac/dkx049. PMid: 28369471
Denton M, Wilcox M, Parnell P, Green D, Keer V, Hawkey P, et al. Role of environmental cleaning in
controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. J Hosp Infect.
;56(2):106-10. DOI: 10.1016/j.jhin.2003.10.017. PMid: 15019221
Zanetti G, Blanc DS, Federli I, Raffoul W, Petignat C, Maravic P, et al. Importation of Acinetobacter
baumannii into a burn unit: a recurrent outbreak of infection associated with widespread environmental
contamination. Infect Control Hosp Epidemiol. 2007;28(6):723-5. DOI: 10.1086/517956. PMid: 17520548
Hardy KJ, Oppenheim BA, Gossain S, Gao F, Hawkey PM. A study of the relationship between
environmental contamination with methicillin-resistant Staphylococcus aureus (MRSA) and patients'
acquisition of MRSA. Infect Control Hosp Epidemiol. 2006;27(2):127-32. DOI: 10.1086/500622. PMid:
Ho C-M, Li C-Y, Ho M-W, Lin C-Y, Liu S-H, Lu J-J. High rate of qacA-and qacB-positive methicillin-
resistant Staphylococcus aureus isolates from chlorhexidine-impregnated catheter-related bloodstream
infections. Antimicrob Agents Chemother. 2012;56(11):5693-7. DOI: 10.1128/AAC.00761-12. PMid:
, PMCid: PMC3486537
Nandalal P, Somashekar R. Prevalence of Staphylococcus aureus and Pseudomonas aeruginosa in indoor
air flora of a district hospital, Mandya, Karnataka. J Environ Biol. 2007;28(2):197-200. PMid: 17915750
Hwang SH, Roh J, Park WM. Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in
facilities for susceptible populations in South Korea. Environ Pollut. 2018;242:700-8. doi:
1016/j.envpol.2018.07.013. PMid: 30029169.
Chaivisit P, Fontana A, Galindo S, Strub C, Choosong T, Kantachote D, et al. Airborne Bacteria and Fungi
Distribution Characteristics in Natural Ventilation System of a University Hospital in Thailand.
EnvironmentAsia. 2018;11(2):53-66. DOI: 10.14456/ea.2018.22
Barbut F, Yezli S, Mimoun M, Pham J, Chaouat M, Otter JA. Reducing the spread of Acinetobacter
baumannii and methicillin-resistant Staphylococcus aureus on a burns unit through the intervention of an
infection control bundle. Burns.2013;39(3):395-403. DOI: 10.1016/j.burns.2012.07.007. PMid: 22884127
Aliabadi AA, Rogak SN, Bartlett KH, Green SI. Preventing airborne disease transmission: review of
methods for ventilation design in health care facilities. Adv Prev Med. 2011;2011:1-21. DOI:
4061/2011/124064. PMid: 22162813. PMCid: PMC3226423
Stawicki SP, Brisendine C, Levicoff L, Ford F, Snyder B, Eid S, et al. Comprehensive and Live Air
Purification as a Key Environmental, Clinical, and Patient Safety Factor: A Prospective Evaluation. In:
Stawicki SP, MS Firstenberg, editors. Vignettes in Patient Safety. 2019. vol. 4. P.138-153. DOI:
5772/intechopen.84530
Sexton T, Clarke P, O'neill E, Dillane T, Humphreys H. Environmental reservoirs of methicillin-resistant
Staphylococcus aureus in isolation rooms: correlation with patient isolates and implications for hospital
hygiene. J Hosp Infect. 2006;62(2):187-94. DOI: 10.1016/j.jhin.2005.07.017. PMid: 16290319.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Knowledge Kingdom Publishing
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.