Assessment of Blood Antioxidant Defense and Oxidative Stress in Colorectal Carcinoma Patients Undergoing Capecitabine and Oxaliplatin Combined with Bevacizumab Treatment

Authors

  • Naima Badid Physiopathology and Biochemistry of Nutrition Laboratory (Ppabionut), Department of Biology, Faculty of Sciences of Nature and Life & Sciences of the Earth and the Universe, University of Tlemcen, Algeria

Keywords:

Antioxidants; Oxidative stress; Colorectal cancer; Chemotherapy

Abstract

Background: Blood oxidant profile affects tumor cell eradication in cancer patients undergoing thermotherapy.  Objective: The study objectives were the determination of the blood oxidant/antioxidant balance in colorectal cancer (CRC) before and after the XELOX regimen combined with Bevacizumab, and also the effect of treatment on the oxidative stress markers during the first cycle of chemotherapy. Methods: In this case-control study, 50 healthy controls and 41 colorectal patients were recruited at Popular Hospital Establishment and Avicène Medical Clinic (Maghnia city, Algeria) during 2019. Blood samples were collected from participants before and after treatment. To determine the fluctuations of redox status vis-à-vis of treatment, levels of oxidant and antioxidant parameters were measured using spectrophotometry. Data were analyzed using independent samples t-test and Pearson’s correlation coefficients. Results: The obtained results highlighted the presence of oxidative stress in CRC cases compared to controls. In CRC, high levels in malondialdehyde (3.06±0.65 µmol/L, p=0.090), superoxide anion (8.38±0.21 µmol /L, p=0.478), carbonyl proteins (0.453±0.11 nmol/mg protein; p=0.292), and peroxynitrite (12.8±4.27 µmol/mL, p=0.093) with significant difference in nitric oxide value (26.07±5.50µmol /L; p=0.0001) were depicted before treatment and, and low total activities of superoxide dismutase (37.81±0.07 U/gHb; p=0.0001) and catalase (29.33±4.99 U/gHb; p=0.0001) with a decrease of glutathione (2.92±0.9 mmol/ L; p=0.0001) concentration were recorded. After treatment, malondialdehyde (1.59±0.11 µmol/L; p=0.003), superoxide anion (7.68±0.17 µmol/L; p=0.003), and carbonyl proteins (0.311±0.02 nmol/mg protein; p=0.024) rates decreased at the opposite of nitric oxide (57.46±9.69 µmol/L; p=0.001) and peroxynitrite (20±3.82 µmol/mL; p=0.002) levels, which increased markedly alike the activities of superoxide dismutase (379.54±0.66 U/gHb; p=0.05) and catalase (131.92±5.83 U/gHb; p=0.0001), and reduced glutathione level (16.11±0.57 mmol/L; p=0.0001) raised significantly.  Conclusion: Limiting the efficiency of drug treatment inhibits the eradicating effect of high blood levels of nitric oxide and peroxynitrite for tumor cells, where cancer patients are nonresponsive to chemotherapeutic treatment. Blood oxidant/antioxidant levels should be an effective guideline for directing the response to cancer treatments, especially the risk of resistance to anti-tumor drugs. Redox homeostasis, which is linked to nutritional profile and lifestyle, should be included in medical check-ups to achieve a better prediction of treatment response.

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: Estimates

of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca Cancer J Clin 2018; 68(6): 394-

doi: 10.3322/caac.21492. PMid: 30207593

Fidler MM, Soerjomataram I, Bray F. A global view on cancer incidence and national levels of the Human

Development Index. Int J Cancer 2016; 139: 2436–2446. doi: 10.1002/ijc.30382, PMid: 27522007

Wu R, Feng J, Yang Y, Dai C, Lu A, Li J, et al. Significance of Serum Total Oxidant/ Antioxidant Status in

Patients with Colorectal Cancer. PLoS ONE 2017; 12(1). doi: 10.1371/journal.pone.0170003. PMid:

, PMCid: PMC5245835

Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in

colorectal cancer incidence and mortality. Gut. 2017; 66: 683 691. doi: 10.1136/gutjnl-2015-310912. PMid:

Chiu HY, Tay EXY, Ong DST, Taneja R. Mitochondrial dysfunction at the Center of Cancer Therapy.

Antioxid Redox Sign 2020; 10; 32(5):309-330. doi: 10.1089/ars.2019.7898. PMid: 31578870

Meyerhardt JA, Mayer RJ. Systemic Therapy for Colorectal Cancer. New Engl J Med 2005; 352: 476-872.

doi: 10.1056/NEJMra040958. PMid: 15689586

Kang J, Zheng R. Dose-dependent regulation of superoxide anion on the proliferation, differentiation,

apoptosis and necrosis of human hepatoma cells: the role of intracellular Ca2+. Redox Rep 2004; 9(1): 37-

doi: 10.1179/135100004225003905. PMid: 15035826

Veljković A, Stanojević G, Branković B, Pavlović D, Stojanović I, Tatjana C, et al. Parameters of oxidative

stress in colon cancer tissue. Acta Medica Medianae 2016; 55(3): 32-37. doi: 10.5633/amm.2016.0305

Wang C, Shao L, Pan C, Ye J, Ding Z, Wu J, et al. Elevated level of mitochondrial reactive oxygen species

via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-

mesenchymal transition. Stem Cell Res Ther 2019; 10:175. doi: 10.1186/s13287-019-1265-2. PMid:

, PMCid: PMC6567550

Glei M, Latunde-Dada GO, Klinder A, Becker TW, Hermann U, Voigt K, et al. Iron-overload induces

oxidative DNA damage in the human colon carcinoma cell line HT29 clone 19A. Mutat Res 2002;

:151-61. doi: 10.1016/S1383-5718(02)00135-3

Halliwell B. Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc T.

; 24:1023-7. doi: 10.1042/bst0241023. PMid: 8968505

Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of

phytochemicals. Am J Clin Nutr 2003; 78:517S-520. doi: 10.1093/ajcn/78.3.517S. PMid: 12936943

Takaki A, Kawano S, Uchida D, Takahara M, Hiraoka S, Okada H. Paradoxical Roles of Oxidative Stress

Response in the Digestive System before and after Carcinogenesis. Cancer. 2019; 11(2). pii: E213. doi:

3390/cancers11020213. PMid: 30781816, PMCid: PMC6406746

Burke AJ, Sullivan F, Giles FJ, Glynn SA. The yin and yang of nitric oxide in cancer progression.

Carcinogenesis 2013; 34(3): 503-512. doi: 10.1093/carcin/bgt034. PMid: 23354310

Hirata Y. Reactive Oxygen Species (ROS) Signaling: Regulatory Mechanisms and Pathophysiological

Roles. Yakugaku Zasshi 2019; 139: 1235-1241. doi: 10.1248/yakushi.19-00141. PMid: 31582606

Idelchik MDPS, Begley U, Begley TJ, Melendez JA. Mitochondrial ROS Control of Cancer. Semin Cancer

Biol 2017; 47: 57-66. doi: 10.1016/j.semcancer. 2017.04.005. PMid: 28445781, PMCid: PMC5653465

Kim R. Introduction, mechanism of action and rationale for anti-vascular endothelial growth factor drugs in

age-related macular degeneration. Indian J Ophthalmol 2007; 55(6): 413-415. doi: 10.4103/0301-

36473. PMid: 17951895 PMCid: PMC2635982

Auclair C, Voisin E. Nitroblue tetrazolium reduction. In: Greenwald RA (ed) CRC handbook of methods

for oxygen radical research. CRC Press, Boca Raton, FL 1985; 123–132

VanUffelen BE, Van der Zee J, De Kostes BM, Van Stereninck J, Elferink JG. Intracellular but not

extracellular conversion of nitroxyl anion into nitric oxide leads to stimulation of human neutrophil

migration. Biochem J 1998; 330: 719-722. doi: 10.1042/bj3300719. PMid: 9480881 PMCid: PMC1219196

Liao Z, Chua D, Tan NS. Reactive oxygen species: a volatile driver of field cancerization and metastasis.

Mol Cancer 2019; 18:65. doi: 10.1186/s12943-019-0961-y. PMid: 30927919, PMCid: PMC6441160

Weinberg F, Ramnath N, Nagrath D. Reactive Oxygen Species in the Tumor Microenvironment: An

Overview. Cancer 2019, 11(8), 1191. doi: 10.3390/cancers11081191. PMid:31426364, PMCid:

PMC6721577

Vadisha Bhat S, Nayak KR, Kini S, Bhandary SK, Kumari SN, Bhat SP. Assessment of serum antioxidant

levels in oral and oropharyngeal carcinoma patients IJPLM. 2016; 2(1)

Mehrabi S, Wallace L, Cohen S, YaoX, Aikhionbare FO. Differential Measurements of Oxidatively

Modified Proteins in Colorectal Adenopolyps. Int J Clin Med 2015; 6(4): 288-299. doi:

4236/ijcm.2015.64037. PMid: 26069854, PMCid: PMC4461072

Yang HY, Chay KO, Kwon J, Kwon SO, Park YK, Lee TH. Comparative proteomic analysis of cysteine

oxidation in colorectal cancer patients. Mol Cells 2013; 35: 533 42. doi: 10.1007/s10059-013-0058-1.

PMid: 23677378, PMCid: PMC3887873

Ten Kate M, Van Der Wal, Sluite W, Jeekel H, Sonneveld P, Van Eijck CHJ. The role of superoxide anions

in the development of distant tumour recurrence. Brit J Cancer 2006; 95: 1497-1503. doi:

1038/sj.bjc.6603436. PMid: 17088916, PMCid: PMC2360748

Fan C, Chen J, Wang Y, Wong YS, Zhang Y, Zheng W, et al. Selenocystine potentiates cancer cell

apoptosis induced by 5-fluorouracil by triggering ROS-mediated DNA damage and inactivation of ERK

pathway. Free Radical Bio Med 2013; 65: 305-16. doi: 10.1016/j.freeradbiomed.2013.07.002. PMid:

Fukumura DS, Jain KRK. The role of nitric oxide in tumour progression. Nat Rev Cancer 2006. 6: 521-

doi: 10.1038/nrc1910. PMid: 16794635

Monteiro HP, Rodrigues EG, Amorim Reis AKC, Longo LSJ, Ogata FT, Moretti AIS, et al. Nitric oxide

and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A

redox signaling perspective. Nitric Oxide 2019; 89:1-13. doi: 10.1016/j.niox.2019.04.009. PMid: 31009708

Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med 2012; 52(9):

-2037. doi: 10.1016/j.freeradbiomed.2012.02.035. PMid: 22391222

Sinha BK. Nitric Oxide: Friend or Foe in Cancer Chemotherapy and Drug Resistance: A Perspective. J

Cancer Sci Ther 2016; 8(10): 244-251. doi: 10.4172/1948-5956.1000421. PMid: 31844487, PMCid:

PMC6914264

Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant Properties

Dedicated to Nanotechnologies. Antioxidants (Basel) 2018; 7(5): 62. doi: 10.3390/antiox7050062. PMid:

, PMCid: PMC5981248

Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM. Glutathione levels in human tumors. Biomarkers

; 17: 671-691. doi: 10.3109/1354750X.2012.715672. PMid: 22900535, PMCid: PMC3608468

Yoo D, Jung E, Noh J, Hyun H, Seon S, Hong S, Kim, D, Lee D. Glutathione-Depleting Pro-Oxidant as a

Selective Anticancer Therapeutic Agent. ACS Omega 2019; 4(6), 10070−10077. doi:

1021/acsomega.9b00140. PMid: 31460099, PMCid: PMC6648603

Chang D, HU Zhang L, Zhang L, Zhao YS, Meng QH, Guan QB, Zhou J, Pan HZ. Association of Catalase

Genotype with Oxidative Stress in the Predication of Colorectal Cancer: Modification by Epidemiological

Factors. Biomed Environ Sci 2012; 25(2):156-162

Badid N, Baba Ahmed FZ, Merzouk H, Belbraouet S, Mokhtari N, Merzouk SA, et al. Oxidant /

Antioxidant Status, Lipids and Hormonal Profile in Overweight Women with Breast Cancer. Pathol Oncol

Res 2010; 16:159-167. doi: 10.1007/s12253-009-9199-0. PMid: 19731090

Downloads

Published

2021-12-07