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Abstract 
Background: In recent years, Radiation Therapy (RT) has undergone many developments and 

provided progress in the field of cancer treatment. However, dose optimisation each treatment 

session puts the patient at risk of successive X-Ray exposure from Computed Tomography CT scans 

since this imaging modality is the reference for dose planning. Add to this difficulties related to 

contour propagation. Thus, approaches are focusing on the use of MRI as the only modality in RT. 

In this paper, we review methods for creating pseudo-CT images from MRI data for MRI-alone RT. 

Each class of methods is explained and underlying works are presented in detail with performance 

results. We discuss the advantages and limitations of each class.  

Methods: We classified recent works in deriving a pseudo-CT from MR images into four classes: 

segmentation-based, intensity-based, atlas-based and hybrid methods and the classification was 

based on considering the general technique applied. 

Results: Most research focused on the brain and the pelvic regions. The mean absolute error ranged 

from 80 to 137 HU and from 36.4 to 74 HU for the brain and pelvis, respectively. In addition, an 

interest in the Dixon MR sequence is increasing since it has the advantage of producing multiple 

contrast images with a single acquisition.  

Conclusion: Radiation therapy is emerging towards the generalisation of MRI-only RT thanks to 

the advances in techniques for generation of pseudo-CT images and the development of specialised 

MR sequences favouring bone visualisation. However, a benchmark needs to be established to set 

in common performance metrics to assess the quality of the generated pseudo-CT and judge on the 

efficiency of a certain method. 
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1. Introduction 

Radiation Therapy (RT) is a treatment that consists of delivering high doses of 

ionising radiation to a tumourin order to destroy it. This treatment option has 

undergone many developments starting from whole body radiation therapy to 

conformal radiotherapy; this latter allows to deliver a limited number of high doses 

to cancerous cells devised on small fractions while keeping the dose delivered to 

the surrounding organs minimal. One important step in the process of Radiation 

Treatment Planning (RTP) is imaging, where a series of imaging studies, usually 

CT, MRI and PET scans are performed. Among these, Computed Tomography 

(CT) is used as the primary imaging modality, as the dose planning relies on the 

electron density information from CT scans (see Figure 1 for an example of 4D 

dose distribution resulting from a carbon ion spot beam, computed on a 4D CT 

volume). However, accurate delineation of a tumour and other organs on CT scans 

is difficult because of its poor soft tissue contrast. In the case of prostate and rectum 

cancers, studies have shown that the prostate and rectum volumes are overestimated 

when contoured on CT scans compared to the delineated volumes on MR images 

(1, 2). 
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Figure .1 4D dose distribution resulting from a carbon ion spot beam computed on a 

4D CT image. 

Hence, Magnetic Resonance Imaging (MRI) is used jointly with CT for its 

excellent soft tissue contrasts that are based on multiple contrast parameters (3). 

MRI is characterised by its superior soft tissue contrasts that allow distinguishing 

several tissues and organs (see Figure 2). It is based on physical characteristics of 

Nuclear Magnetic Resonance (NMR) of water protons in the body. Radio waves 

are used to excite the nuclei of hydrogen atoms within the patient's body. These 

radio waves are subsequently re-emitted by the patient in a manner, which is 

characteristic of the NMR properties of the tissues involved, detected, digitised and 

processed by a computer and displayed as tomographic slices revealing the 

distribution of different tissues.  

 

 

Figure .2 Brain CT, T1-weighted, T2-weighted and proton density MRI slices (from 

left to right) showing the different contrasts provided by MRI compared to CT. 

Thus, MRI is used for defining the target volume and Organs At Risk (OAR). 

Afterwards, these contours are transferred to CT data using contour propagation 

techniques (4-8) for dose calculations; contour propagation is achieved by spatially 

aligning the CT and MR images using image registration techniques (9). However, 

this task can result in a mean registration error of approximatively 2 mm in body 

organs such as the prostate, which can cause a significant shift in target volume 

definition, consequently leading to a reduction in treatment accuracy and efficiency 

(10-12). 

Nowadays, studies strive for using MRI as the only modality in radiation 

therapy to take advantage of its soft tissue high contrast, remove registration 

uncertainties, reduce financial cost and imaging time and limit radiation exposure 

from X-Ray scans. Moreover, with the increasing development of MRI, this 

imaging modality has become the tool of choice for many treatments. Therefore, 
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the need for a strategy that can combine the dose planning and an excellent 

structures visualisation has called for an MRI-alone RTP; the idea is to derive a CT 

or a so-called pseudo-CT from MRI data. Nevertheless, MRI cannot be used 

directly for dose planning because MR intensities correlate with proton densities 

and relaxation properties, whereas dose calculations require data on Electron 

Density (ED) derived from CT scans. Therefore, ED information needs to be 

assigned to MR images. 

The earliest approaches for assigning ED information to MR images consisted 

of setting the whole body to a uniform bulk density value (usually corresponding to 

water) and assigned a different bulk density for bone volume (13-16) Beavis et al. 

(13) used a water method for an MRI-alone radiation therapy workflow. The whole 

body was set to a homogeneous electron density value of water. Despite its 

simplicity, this approach cannot generate a reliable CT reference for dose 

calculation and may lead to erroneous results (17).  

An improved approach that segments the anatomy into different tissue classes 

and assigns a uniform bulk density values for each class (14, 18, 19, 15, 16, 20). In 

(14), contoured CT images were used to derive electron density information using 

two approaches: one consists in setting the whole body to a homogenous CT value 

of water (0 HU), and the other approach created a bone + water image were bone 

was manually contoured on CT scans, these contours were assigned an average 

Hounsfield Unit (HU) value of four patients (320 HU). The rest of the voxels were 

assigned the value of 0 HU. The bone + water approach was applied to segmented 

MR images and assigned the corresponding derived HU values to each segment. 

Chen et al. (18) delineated the bony structures of the pelvic (femoral heads and 

scrum) manually on T2-weighted sequences and assigned to them a bulk value of 

2.0 g/cm3in order to perform an MRI-based Intensity-Modulated Radiation 

Therapy (IMRT). Dose differences between the CT-based and their MRI-based 

dose plans were within the accepted clinical criteria (2%).  

In (19), Eilertsenet al. investigated the dosimetric accuracy of treatment plans 

created from pseudo-CT images estimated using three approaches; the first 

approach is water-based where the whole volume was set to the value of 1.02 g/ 

cm3. The second approach assigned the value of 1.3 g/ cm3 for the segmented 

pelvic bone and the rest of the body was assigned the value of 1.02 g/ cm3. The last 

approach is similar to the second one, only differed by assigning the bone a value 

of 2.1 g/ cm3. Results for dose distribution differences for IMRT plans revealed 

that the second approach (with bone assigned a bulk value of 1.3 g/ cm3) performed 

better with the relative difference of the mean dose to the Clinical Target Volume 

(CTV) equal to -1.6% ± 0.4, compared to -2.8% ± 0.5 and -4.3% ± 1.7 for the water 

and the “2.1 g/ cm3”-bone approaches, respectively. Furthermore, authors 

mentioned that the dose inhomogeneity in the CTV increases when bone is set to 

the value of 2.1 g/ cm3. 

Lambert et al.  (16) assigned the bulk value of 1.13 g/ cm3 for the pelvic bone 

in MR images to investigate on the dosimetric accuracy of the generated plans 

compared to the full density CT-based (Gold standard) and water-based plans. 

Results showed an average dose difference of 1.3% between the gold standard and 

the MRI-based bone bulk density plan compared to 2.5% of dose differences 

between the MRI-based bone bulk density plan and the water approach. 

Hoogcarspel et al.  (21) investigated the dosimetric accuracy of different bulk 

density approaches forcreating a pseudo-CT from MRI data in the context of 

Stereotactic Body Radiation Therapy (SBRT) for spine metastases. Five different 
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pseudo-CT images were generated based on different tissue segmentations (water 

density, lung density, bone density, fat density and heterogeneous density). The 

heterogeneous density pseudo-CT was generated by aligning fat and water Dixon-

based MR sequences to a CT containing contours for the target volume. This was 

done to assign the electron density value of the target volume to the MR image. 

Therefore, creating a pseudo-CT containing the electron density values of fat, 

water, lung and bone. The Gamma pass rate was set to ≥ 95% as the success rate to 

quantify the dosimetric accuracy of the investigated approaches. The first four 

approaches presented unacceptable results going from 78% and bellow, whereas 

the heterogeneous density approach performed better with 99% pass rate. 

Furthermore, dose differences within the target volume showed better results for 

the latter approach compared to water and fat approaches, i.e., 0.13% compared to 

-2.66% and 2.46%, respectively.  Authors stated that when using additional bulk 

densities, the dosimetric accuracy improves. However, this approach cannot be 

considered fully based on MRI alone for the reason that it depends on CT images 

to assign the electron density of spinal bone. Karotki et al.  (22) assigned three bulk 

densities to the segmented bone, air cavities and air (1.5g/cm3, 0g/cm3, and 

1g/cm3, respectively). Nevertheless, these approaches suffer from segmentation 

errors and the required time for segmentation is significantly extended. 

Aside from the above-mentioned methods, more sophisticated approaches are 

developed in order to assign the ED information to MRI data which is the interest 

of this paper. We review and classify methods for generating pseudo-CT images 

from MRI data. A classification of these methods with a detailed description of 

research works involved in each class of methods and some statistical performance 

results are presented. Nonetheless, one cannot make a direct comparison between 

these approaches in the absence of a generalised benchmark because of differences 

in the considered body region, datasets, MRI sequence parameters, applied RT and 

types of performance metrics used to evaluate the approach. We further address the 

advantages and drawbacks of each class of methods and discuss new orientations 

to deal with the limitation and difficulties encountered.  

2. Performance metrics 

To evaluate the performance of a certain method for creating a pseudo-CT from 

MRI, the generated pseudo-CT is compared to the gold standard CT (generally a 

real CT) using different performance measures. We grouped evaluation measures 

to geometric and dosimetric measures. The current section presents the common 

metrics used for evaluation. 
1.1. Geometric evaluation measures 

Measures in this category evaluate the voxel-wise differences between the 

original and pseudo-CT in HU values. We find the Mean Absolute Error (MAE) 

and the Mean Error (ME). Their respective equations are given by:  

 
and 

 
Where N is the number of voxels, CTi  andpseudoCTi are the HU value of a voxel at 

index iin the gold standard CT and the pseudo-CT, respectively. 
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The Dice Similarity Coefficient (DSC) for bone (24) is a metric that measures the 

overlap between the original CT and the pseudo-CT bone volumes. It is given by 

the following formula: 

 
Where V is the bone volume in the original CT and pseudo-CT. 

 
1.2. Dosimetric evaluation measures  

 

Metrics in this category evaluate the dose differences of the generated plans 

between the original CT and the pseudo-CT. One common metric is the gamma 

index γ (25) that evaluates the dose distribution differences between each voxel in 

the original CT and the pseudo-CT.  

 

Where  and  are respectively distance and dose between a voxel of interest and 

a neighbouring voxel in two dose distributions.   and  are the defined 

success thresholds. Generally, they are set to these values : and 

 of the prescribed dose.  

The Dose Volume Histogram (DVH) compares dose distributions, which 

expresses the minimal dose (DV) that a volume V (expressed in percent) receives. 

For example, D98 is the minimal dose delivered to 98% of the volume of interest. 

Probably add other measures without explanation 

 

3. Classification of pseudo-CT generation 
methods 

 

The existing work in deriving a pseudo-CT from MR images can be broadly 

classified into four categories: segmentation-based, intensity-based, atlas-based and 

hybrid methods. This latter consists of approaches combining methods of the earlier 

categories. The choice of this classification scheme was based on considering the 

general technique applied in the approach. Other classifications exist, where three 

categories are established, each grouping segmentation-based, atlas-based and 

hybrid approaches (26). We preferred to make a broad categorizationin order to 

give a more understanding of the methods. Figure 3 presents a diagram describing 

the classification with some underlying techniques. This section provides a detailed 

overview of each class with related works classified chronologically. In this paper, 

the term pseudo-CT is used to refer to the MR image assigned ED information. 



Medical Technologies Journal, Volume: 2, Issue: 1, January-March 2018, Pages:150-178. 

Doi :https://doi.org/10.26415/2572-004X-vol2iss1p150-178 

155 
 

 

Figure .3 Diagram for the classification of methods assigning ED information 

to MR images with some underlying techniques. 

 
3.1. Segmentation-based approaches  

 

These approaches rely on segmenting MR images into several tissue classes: 

usually three, 4 or 5 classes, for example, bone, air, soft tissue and fat, based on 

Dixon sequences (27-30), or using fuzzy logic algorithms (31, 32, 27, 33, 34). Then, 

each tissue class is assigned a specific HU value in order to obtain the final pseudo-

CT. 

Zaidi et al.  (31) presented an MR segmentation approach for attenuation and 

scatter correction in a 3D Positron Emission Tomography (PET) by generating a 

patient-specific attenuation map. After extraction of the skull and scalp on T1-

weighted MR images, they were registered to their corresponding reconstructed 3D 

PET images, followed by recording spatial information from the registered maps. 

This information was applied to the original MR images that were segmented using 

a fuzzy C-means algorithm to yield four tissue classes. Each class was assigned 

attenuation coefficients to obtain the final MR segmented attenuation map. 

Qualitative and quantitative results show an improvement compared to the clinical 

3D brain PET reconstruction using attenuation and scatter correction guided by 

measured transmission. However, this approach follows many processing steps, 

which may introduce a long processing time. Moreover, the accuracy of the MR-

PET registration depends on the used method and may introduce some registration 

errors. In addition, the intensity inhomogeneity artifacts present in the MR images 

introduced a shading effect after the segmentation process. This latter needed some 

manual interventions from the operator.  

In (35), Boettger et al.  used two sets of MR images namely: UTE sequence to 

enhance visualisation of bony structures and an enhanced contrast sequence for soft 

tissue visualisation. The first data set of MR images comprised of two sequences, 

one with an Ultrashort Echo Time pulse (UTE1) and the other with a longer TE 

pulse (UTE2). The second sequence (UTE2) was auto-segmented for skin 

detection; pixel intensity values of this sequence were subtracted from the first 

sequence (UTE1) to improve bone visualisation. Moreover, They generated 
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Digitally Reconstructed Radiographs (DDRs) based on a look-up table that maps 

MR intensities to electron density values using predefined thresholds. Furthermore, 

a pseudo-CT was generated by assigning HU values to each tissue class (air, bone 

and soft tissue). The limitation of this approach is that the bone segmentation 

technique can be used only on UTE sequences. Moreover, this technique showed 

undesired results of over-segmenting and under-segmenting partial regions of the 

brain. 

Berker et al.  (27) presented a four-class tissue segmentation approach for MRI-

based attenuation correction. The MR images used are a UTE triple echo sequences 

where the cortical bone segmentation is achieved by using a dual echo technique 

(36). Soft tissue and adipose tissues were segmented using a Dixon decomposition 

(28, 29), then the attenuation coefficients are assigned to each tissue class. The 

approach presented a misclassification between bone and soft tissue voxels. 

In (32), authors presented a classification approach to generate a pseudo-CT 

from several MR images such as T1-weighted, T2-weighted, and two echoes from 

an Ultra-short Echo Time (UTE) sequence. Next, fat and water images were 

calculated using a Dixon method. These images were used to distinguish the major 

tissue types of bone, fat, solid tissue, fluid and air. The MR images were aligned 

together and then a fuzzy c-means classification was performed in order to identify 

regions of interest and classify tissues. Each tissue class was assigned a fuzzy 

membership probability and an appropriate attenuation property. The final pseudo-

CT is generated by summing attenuation properties of each voxel. However, results 

show that the classifier tended to misclassify air as bone and the use of UTE 

sequences does not completely separate bone from the air. 

In (37), Rank et al. presented a classification approach using discriminant 

analysis to derive a pseudo-CT from different MR contrasts. The MR images were 

resampled to CT resolution with linear interpolation and then, each MR image was 

co-registered to its corresponding CT with rigid registration taking mutual 

information as a similarity measure. A threshold mask was used to limit the area of 

interest and cross-validation was performed for parameter optimisation. The 

optimisation resulted in TSE1 and UTE1 sequences as the best MR contrast 

combination with two features used (box.sd: the standard deviation of the 

surrounding box including the central voxel multiplied by the intensity of the voxel 

and dist.center: the absolute distance of the voxel to the centre of the 2D 

slice).Discriminant analysis is employed to assign observation variable vectors 

composed of MR intensities features of a given voxel to predefined classes using 

decision rules obtained in the learning step. Each CT class is a 35 HU rang in the 

CT scale. Results showed a MAE of 81 HU, 95.2 HU and 90.1 HU for each phantom 

used, respectively. The standard deviations of the absolute error between voxels 

were in the range of 130 to 152 HU, which is a significantly large interval. For Ion 

Radiotherapy Treatment (IRT) plan simulation, mean doses of the Planning Target 

Volume (PTV) were 1.4-3.1% higher and volumes with PTV doses less than 90% 

of the prescribed doses were 2.2-8.3% smaller compared to the original CT based 

dose planning calculations. 

Navalpakkam et al.  (38) used UTE and 3D Dixon-VIBE sequences to predict 

pseudo-CT images to be used for the generation of µ-maps for MRI-based brain 

attenuation correction. The process starts by performing a voxel-wise addition of 

UTE-TE1 (used for bone identification), 3D-Dixon VIBE in-phase and 3D-Dixon 

VIBE out-phase images. The resulting image was used to identify air regions by 

applying the k-means clustering algorithm. To learn the relations between these 
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processed images and their corresponding CT images. Five patients were integrated 

into the learning phase and support vector regression was used. Next, the generated 

regression model was applied to five new MR patients to predict their pseudo-CT 

images. Their approach gave a MAE of 2.4% with a Standard Deviation (SD) of 

3.68% in PET quantification for the whole brain. 

Su et al. (30) proposed a method for acquisition, correction and generation of 

a pseudo-CT image based on a single acquisition under-sampled UTE-m Dixon 

pulse sequence. Two point Dixon volumes were reconstructed to provide water and 

fat images. These images were used along aside with R* images, which provide 

bone information as inputs for an unsupervised clustering algorithm to estimate five 

tissue classes namely: air, brain, fat, fluid and bone, each class was assigned a 

specific HU value to yield the final pseudo-CT. The mean absolute prediction 

deviation between the gold standard (low dose CT) and the pseudo-CT was 130±16 

HU and the mean prediction deviation was -22±29 HU.  

Khateri et al.  (33) used short-TE and two-point Dixon MR sequences to 

generate µ-maps using Fuzzy C-means (FCM) algorithm focusing on bone 

identification. Fat and water masks were derived from the in-phase, water, and fat 

images using a modified C-means algorithm. The soft tissue mask was the result of 

summing the air and water masks, this mask was applied to the short-TE sequence. 

Later, this image was segmented based on a fuzzy C-means algorithm yielding four 

tissue classes: bone, air, adipose tissue and soft tissue; each of these classes 

belonging to a particular HU interval was assigned attenuation values.  

Liu et al. (39) employed T1 Dixon MR sequences in a classification scheme 

combined with shape analysis to create a pseudo-CT. First, an initial mask was 

generated by combining T1, water and fat images to detect bone and air voxels. 

Then, a bone shape model (40) was applied to this mask in order to identify the 

pelvic bone. Femur bone was detected using 3D connected component analysis. To 

segment the rest of the body, a modified version of the FCM algorithm was applied 

and five tissue classes were identified including compact bone, fat, muscle, and the 

combination of fat interfaces and bone marrow. The pseudo-CT was generated by 

assigning a specific HU value for each tissue class. MAE±SD was 274.9±26.9 HU 

for solid bone averaged on nine patients while muscle had an error of 13.7±1.8 HU. 

Bredfeldt et al.  (41) generated pseudo-CT images for the liver using T1 Dixon 

MR sequences with FCM algorithm. The approach starts by performing intensity 

thresholding on T1, water and fat images yielding an air mask. In addition, the 

contours of the vertebral bone were segmented from the fat images using a learning 

approach (42, 43). T1, water, and segmented fat images were used as the input for 

a modified FCM algorithm (32) that resulted in different tissue classes depending 

on their intensity (mid-intensity, lower intensity, bone or marrow in the abdomen). 

The MAE ranged from 0 to 160 HU.  However, the bone outside the segmented 

anterior vertebra bodies was misclassified as mid and lower intensity tissue. 

Nevertheless, this misclassification does not seem to affect the dose calculation 

very much where the absolute dose differences are within acceptable ranges 

(Median ±0.17 Gray (Gy) and Max± 0.81 Gy).  

 
3.2. Intensity-based approaches  

 

Intensity-based approaches assume a one-to-one correspondence between MR 

and CT voxels and characterize their intensities into tissue classes that are assigned 
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electron density values (44-46). Additionally, machine learning algorithms are used 

to characterize the relations between CT and MRI voxels (47, 48). 

Johansson et al.  (49, 50) used three MR sequences, namely: T2-weighted 3D 

Spin Echo (SE) based sequence and two Ultra-short Echo Time (UTE) sequences 

(The UTE sequences are used to enhance visualization of bone). Their approach 

used a Gaussian mixture regression model to link the MR and CT intensities by 

performing clustering on the whole dataset with voxels from all tissues wherean 

intensity value characterizes each cluster. The pseudo-CT voxel values are 

calculated based on the estimated regression model. Streak artefacts in MR images 

caused the major differences between the original CT and the pseudo-CT. 

Furthermore, despite the use of UTE sequences to differentiate air and bone, their 

suggested approach had large deviations between the real CT and the pseudo-CT 

that were located at the air-soft tissue and bone-soft tissue interfaces. To address 

this problem, authors extended their work (51) by incorporation of spatial 

information, namely: x, y and z coordinates of each voxel and the shortest distance 

from each voxel to the external contour of the anatomy. Results show an 

improvement in complicated small structures, but no improvement was found in the 

larger anatomical volumes. 

In (52), Kapanen et al used a T1/T2*-weighted 3D Gradient Echo (GE) MR 

sequence for pelvic bones. The relations between MR intensities and HU values 

were expressed using a polynomial model that is based on MR signal intensity and 

fitting parameters. The voxels of the segmented bone structures were grouped into 

sixteen subgroups based on their MR intensity values. The polynomial model was 

then applied to each of these subgroups to convert the mean MR intensities to 

Hounsfield values.  

Kim et al.  (53) presented a voxel-based weighted summation approach for 

generating a pseudo-CT from four MR sequences (3D T1-weighted Fast Field Echo 

(FFE) sequence, 3D T2-weighted Turbo Spin Echo (TSE) sequence, 3D balanced 

Turbo Field Echo sequence (bTFE) and an inverse intensity volumetric image) for 

prostate cancer patients. Authors manually contoured bone on T2-weighted 

sequences and registered them to their corresponding CT volumes using rigid 

registration. Each MR voxel intensity was calculated using a weighted summation 

of the intensities of the corresponding voxels of the four MR sequences. Weight 

optimization was performed to reduce errors starting with random weights to 

generate an initial pseudo-CT and optimizing by reducing the Euclidian distance of 

calculated voxel value differences between the pseudo-CT and real CT over one 

thousand iterations. In addition, the resulting optimized weights were used for the 

next pseudo-CT generation. Average MAE was 74.3 ± 10.9 HU for nine subjects; 

errors were located around bone contour borders. However, manual bone 

contouring may introduce uncertainty and it is time-consuming.  

Korhonen et al.  (54) presented a dual HU conversion model for deriving a 

pseudo-CT from MR sequences based on two conversion models. The first model 

was used to convert soft tissue MR signals to HU values: the idea is to mark Regions 

Of Interest (ROIs) on CT scans (100 ROI for each patient) covering muscle, urine, 

fat, prostate and rectal wall. These ROIs were then transferred to MR images via 

co-registration. The MR intensity scale was divided into ranges, each describing 

signals from different tissues (muscle, urine, fat, prostate and rectal wall) and each 

MR intensity value belonging to a specific signal rang is converted to the 

corresponding HU value. The second conversion model is for converting signals 

from the bone tissue; authors used the approach in (52) with a patient-specific cut-
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off to improve the representation of low-density signals because these can vary 

significantly between patients. Average tissue differences between the pseudo-CT 

and real CT ranged from -2 to 5 HU for soft tissue, and from 22 to 78 HU for bone. 

However, the conversion model overestimated HU values for low electron density 

structures, and the manual bone segmentation introduces a significant time. 

Moreover, the approach required manual adjustments of the signal cut-off for each 

patient, which is not practical. 

Roy et al.  (48) followed a Bayesian scheme to generate a pseudo-CT from two 

UTE MR sequences, each voxel of the reference images (two UTE sequences and 

one CT scan) and the subject data was represented by a feature vector called a patch. 

The subject and reference patches represent a local pattern of intensities that have 

been scaled to a similar intensity rang. Once the pairs of CT and MRI for both 

subject and reference are linked using a Gaussian distribution, the unknown CT 

patches for the subject are predicted and combined through the use of Bayesian 

networks. 

In (55), Zhong et al. presented a new method that uses KNN regression with 

learned local descriptors to predict a CT from T1- and T2- weighted MR sequences. 

The approach consisted in extracting local compact descriptors for each region in 

the MR sequences; learning the transformations using the supervised descriptor 

technique (56) and predicting CT image using KNN regression; where, for each 

point x of a subject MR image, a local search window centre is defined in the same 

location in the training CT-MR pairs. The prediction of the pseudo-CT was done 

by searching the K-nearest neighbours of each point descriptor in the test MR 

image, the result is k MR descriptors, by considering the alignment property of the 

MR-CT pairs, the k samples of the corresponding CT are obtained. The final 

pseudo-CT is generated by performing a weighted average on the overlap CT 

patches. Another recent work by Huynh et al (57), where authors used structured 

random forests and auto context model to estimate a CT. Their method consists of 

partitioning each MR image into sets of patches where each patch is characterized 

by four features that are extracted at three levels (voxel level, sub-region level and 

whole patch level) including spatial information. To learn the relations between MR 

and CT patches, structured random forests are used to train the MR features. The 

resulting forests are used to predict initial CT patches. An auto-context model is 

employed to enhance the prediction of the CT. The previous CT patches are trained 

for new sets of random forests that are improved using ensemble model to yield the 

final CT predicted image. 

3.3. Atlas-based approaches  

 

The approaches in this class consist of using deformable registration algorithms 

(58-65) and a database of aligned CT-MR atlases. The MRI atlas is warped to a 

target MR image in order to capture the target’s anatomy. Then the resulting 

registration transformations are applied to the CT atlas to predict the final pseudo-

CT image. 

Kops et al.  (66) followed a template-based scheme to create PET transmission 

images from MR sequences. Ten PET transmission scans were spatially normalized 

to the attenuation template of SPM2 (an SPM template is composed of a pair 
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consisting of a PET transmission scan and its corresponding MR image), and 

averaged to create the transmission template. Each subject’s MR and PET images 

were manually co-registered; then, the SMP2 MR template was spatially 

normalized to the co-registered MR image. The resulting transformation matrix is 

applied to the attenuation template to match the subject’s anatomy. 

Schreibmann et al.  (67) used deformable image registration to create a pseudo-

CT from MR images. The idea is to warp an atlas CT image to the patient MR image 

combining a parametric and non-parametric registration algorithms namely B-

Spline and Hermosillo, respectively. B-Spline was used to account for large 

deformations while the Hermossilo algorithm was employed to refine the results 

from the B-Spline registration. To evaluate their results, authors used a three-

dimensional surface comparison tool to compare the differences between the 

pseudo-CT and the simulated CT (Gold standard). Test results show that 20% of 

surfaces have an error larger than 2 mm and less than 1% of the surfaces presented 

errors larger than 1 cm for the bone. 

Greer and al.  (68) presented an MRI-based workflow for radiation therapy, the 

subject’s MR image was automatically segmented by registering it to an averaged 

set of manually segmented MR images used as an atlas. A matching CT atlas set 

was used for an automatic estimation of electron density values for each segment, 

therefore, mapping HU values to MR images. 

Dowling et al. (69) presented an atlas-based electron density mapping method 

for auto-segmentation of MR images and pseudo-CT generation. To construct the 

atlas pair, a set of training MR-CT pairs was co-registered using rigid and affine 

registration. The atlas MR image is generated by iteratively registering training 

contoured MR images and averaging the results to obtain the atlas. The 

transformation metrics and deformation fields from the previous registration task 

are applied to the CT training set to generate the CT atlas. In order to estimate the 

pseudo-CT, the new patients MR image is registered to the atlas MR image for auto-

segmentation, then the same deformations are applied to the CT atlas. 

In (17), authors used atlas registration between T1-weighted MR images and a 

template patient composed of matched pairs of CT-MR images to determine the 

geometry of each voxel (position) given its intensity in the T1 MR image. This 

information is represented by a Conditional Probability Function (PDF) and is 

combined into a unifying posterior PDF. This PDF is used to predict the unknown 

electron density values for the corresponding MR image. 

Burgos et al.  (70) proposed a multi-atlas scheme to synthetize a CT and 

attenuation maps. They used a set of atlas images composed of T1-weighted MR 

and CT scans. The first step aims at registering atlas images to the target MRI using 

symmetric global registration and B-spline parametrized non-rigid registration. 

Two morphological similarity measure were used: The Local Normalized 

Correlation Coefficient (LNCC) and the local Normalized Sum of Square 

Differences (NSSD). A ranking scheme was used to assign weights to the registered 

images, i.e., the better is the registration, and the higher is the weight. This step was 

followed by mapping the atlas CT scans to the transformation maps obtained in the 

previous step using the assigned weights to construct the target CT. However, the 

performance of this approach is limited by the anatomical information of CT scans 

and T1-weighted MR sequences and seems susceptible to the choice of optimization 

parameters.  

Uh et al. (71) used atlas registration to create a pseudo-CT using T2-weighted 

Turbo Spin Echo (TSE) MR sequences based on multiple atlas images. The atlas 
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set was composed of six pairs of MR-CT volumes that were registered with linear 

rigid-body registration. Atlas MR volumes were later registered to the patient MR 

volume using non-linear spatial registration. Then, the same deformations are 

applied to the atlas CT volumes. To generate the pseudo-CT, authors used three 

schemes to combine the deformed CTs, namely: arithmetic mean of each voxel in 

each of the deformed CTs (Mean6), pattern recognition with Gaussian process on 

6 atlases, and on 12 atlases (PRGP6 and PRGP12). The intensity value of each 

voxel is a weighted average of the corresponding voxels of the deformed CTs. 

Results show that the generated pseudo-CT through PRGP12 performed better in 

terms of the Root Mean Square (RMS) difference compared to the real CT (207 HU 

compared to 219 HU and 224 HU for PRGP6 and Mean6, respectively). Concerning 

dose calculations, the D95 and the mean dose to the PTV results for the three 

schemes differed from the original values by 1.8% and 1.3% of the prescribed dose. 

The pseudo-CT generated with arithmetic mean showed the best value of the 

volume satisfying the Chi-evaluation (98.7 compared to 98.3 and 98.5 for PRGP6 

and PRGP12, respectively). However, all three used schemes showed a smoothing 

effect where the high intensities in bone smear into the surrounding tissue. 

Moreover, the Gaussian process scheme is computationally expensive.  

In (72), Sjölund et al proposedan atlas-based regression technique to derive a 

pseudo-CT from T1-weighted MR sequences. MRI and CT atlases were aligned 

with rigid registration. Then, the MR atlas volumes were warped to the target MR 

image using the deformable image registration algorithm Morphon (73) and a 

binary mask. The Morphon algorithm is based on estimating displacement vectors 

that point to the corresponding location in the target image. It uses local phase 

differences between signals of similar local frequency to estimate the spatial shift. 

This is done based on quadrature filters. The registration was performed on different 

scales to capture large global displacements and small local deformations. The 

resulting deformations were then applied to the atlas CT scans. The pseudo-CT was 

created by fusing the deformed atlases by iteratively registering the set to its joint 

mean.  

Mérida et al.  (74) presented a maximum probability approach to generate a 

pseudo-CT from T1-weighted MR sequences. Their maximum probability 

approach starts by registering atlas MRI to the target MRI volume. The 

transformations from this registration were warped to the atlas CT scans to deform 

them. For each voxel of these deformed CT volumes, a maximum probability class 

label was calculated considering three tissue classes (soft tissue, air, and bone) and 

the final voxel value is calculated by averaging HU values belonging to the 

maximum probability class of the corresponding voxels in all the deformed CT 

images. 

In a more recent work, Arabi et al. (75) presented a two-step atlas method 

focusing on bone tissue identification. The first step aims at segmenting the target 

image in order to identify bone structures based on a voxel by voxel voting scheme; 

the result is a binary bone map. In the second step, a similarity measure is 

established between atlas CT images and the resulting bone map in order to define 

weights for the contribution of each CT atlas. An atlas fusion framework is locally 

optimized according to the resemblance to the obtained target bone map and the 

morphological similarity to the target MR volume. 

Kraus et al.  (76) used landmark image registration to predict a pseudo-CT based 

on a rigidly registered pair of MR and CT images. The Atlas MR image was 

registered to the target MRI using a marker-based rigid and deformable registration. 
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This transformation is applied to the atlas CT to result in the pseudo-CT. MAE±SD 

ranged from 29.9±53.8 HU to 37.6±82.6 HU for the body and from 31.3±27.3 HU 

to 37.3±35.8 HU for the prostate. 

 
3.4. Hybrid approaches   

 

Other works use combinations of the above-described approaches to combine 

their strengths, reduce their weaknesses and palliate for limitations, approaches in 

this class are called hybrid (77, 78, 79, 44, 80, 81, 46, 82).  

Hoffman et al.  (78) combined atlas registration and pattern recognition to 

predict a pseudo-CT for attenuation correction. The approach consists of learning a 

model on a dataset of registered MR-CT atlases to define a mapping from MR 

intensities to CT intensities. The first step consists of using B-spline registration 

with mutual information as a similarity measure to construct the MR-CT atlas 

database. Then the MR atlases are registered to the test MR volume using spatial 

normalization and the same transformations are applied to the CT atlases. These 

transformed atlases are used to extract pairs of MR patches and their corresponding 

CT values at each voxel location. A regression process that incorporates prior 

knowledge from the transformed images and uses a kernel function to measure the 

degree of similarity between MR patches was used to predict CT values for an 

unseen MR patch and generate the final pseudo-CT. The approach overestimated 

the bone in case of the presence of a proximate lesion.  

Chen et al.  (79) estimated a pseudo-CT from standard T1-weighted MR 

sequences of the head taking into account distinction between bone and air. To do 

this, authors generated air maps from CT scans and rigidly registered them to the 

corresponding MR images. This was done for all the atlas images of the training 

set, and then all air maps were warped to the patient MR image to locate air, once 

this is done. For each air voxel, an average CT value is assigned from atlas voxels 

of the same location. At tissue location, hidden Markov Random Field (hMRF) and 

sparse regression were used to predict CT values. The idea is to measure the 

resemblance between the MR atlas patches and the patient MR patch to assign a 

high weight if the resemblance is strong, assuming that similar MR patches 

correspond to similar CT patches. The final value of the pseudo-CT patch is 

calculated using the weighted average of the overlap CT atlas patches. Despite the 

good results in PET simulation; 1.60±0.51% for the Mean Absolute Relative Error 

(MARE) and 5.45± 1.36% for the Full Width Tenth Maximum (FWTM), the 

approach presented some misclassification results where some bone was classified 

as air. Furthermore; when compared with the averaged atlas method, if one would 

choose a compromise between workload and accuracy, the averaged atlas approach 

would be chosen since the presented results are acceptable (1.70±0.57% for MARE 

and 6.3±1.29% for FWTM). 

In (44), Andreasen et al presented a patch-based approach for predicting 

pseudo-CT from conventional MR sequences. Five brain images from MR and CT 

were aligned using mutual information as a similarity measure (the aligned images 

constitute the patch database). Each patch P(x) in an x MR location corresponds to 

a T(x) value defining an HU value in the corresponding aligned CT scan. The 

pseudo-CT for the test patient is predicted using an intensity-based nearest 

neighbour search in the patch database. For each test patch, the goal is to find the 

minimized squared L2-norm between the test patch and the database of patches. K 

most similar CT patches are found and the final CT patch value is obtained by 
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computing a similarity-weighted average. The structural similarity measure was 

used to discard the high dissimilar patches and reduce the search space. This 

approach depends on anatomical similarities, and the assignment of the average of 

the surrounding patches can cause problems when the surrounding tissues are 

different from the one being calculated.  

Siversson et al.  (80) used an automatic tissue classification approach using 

statistical decomposition algorithm with image registration to predict CT images 

for the pelvic region. A database of contoured MR-CT pairs is used to register the 

atlas MR images to the patient’s MR image. Each pair registration yields a 

candidate organ segmentation and the final MR segmentation is calculated using a 

weighted voting method. Next, a non-linear warping procedure is applied to each 

of the atlas MR images in order to align the segmented structures to the newly 

segmented MR image. The resulting deformation fields are applied to their 

corresponding CTs and the final pseudo-CT is generated by fusing all the deformed 

CTs. Mean absorbed dose differences to the target was 0.0%±0.2 (1.s.d) and the 

MAE was 36±4.1 (1.s.d) within the body contour. 

Wu et al.  (46) used local sparse correspondence combination to predict a 

pseudo-CT for the head. They assumed that MR and CT patches (each patch is a 

feature vector) are located on two non-linear manifolds. The approach consists of 

constructing initial MR and CT patch dictionaries by collecting patches within a 

local search window, next, the Knnalgorithm is applied to restrict the number of 

patches in the dictionaries. The MR dictionary is used to linearly represent the MR 

testing sample while ensuring the locality of the representation. The final CT 

patches are predicted by doing a weighted average of the corresponding CT patches.  

Demol et al.  (82) introduced an approach that uses deformable image 

registration combined with MR intensity information to generate a pseudo-CT from 

T1-weighted MR images of the brain. This approach aims at incorporating the MR 

intensity values into the generation of the pseudo-CT. The approach starts by 

registering an atlas MR image to its corresponding CT image via rigid registration 

with mutual information as a similarity measure. Then, the atlas MR image is non-

rigidly registered to the MR image of the patient using the hybrid deformable image 

registration algorithm ANACONDA. The same deformations are applied to the CT 

atlas. Later, these two deformed atlas images were resampled to the same coordinate 

grid to apply voxel intensity computations. I.e., in the deformed MR image, a 

certain group of similar voxels was selected by doing a local search inside a 9×9×9 

box centred at each voxel with the selection threshold set to 10%. The pseudo-CT 

value is calculated by averaging the CT values at the corresponding voxel location 

of the deformed CT. Comparison with the real CT resulted in an MAE of 150 HU. 

The main limitation of the approach is that the MR intensity search introduced 

incoherent CT numbers due to increasing the search area when no corresponding 

voxels are found inside the search box. Furthermore, noise near bone and air 

cavities was detected. 

A recent work of Burgos et al.  (81) used a database containing delineated T1, 

T2, CT images and a manually segmented image to create a pseudo-CT by 

combining atlas registration with segmentation in a single iterative framework. 

First, the atlas T1 and T2 images are registered to the target MR image to obtain an 

initial segmentation, and the transformations are applied to the atlas CT images to 

obtain an initial pseudo-CT.  The initial segmentation and pseudo-CT are used 

alongside with the atlas database as inputs for the next iteration, and the process is 

repeated until satisfactory results are obtained. The number of iterations was set to 
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four and the registration was based on two similarity measures, namely: the 

Structural Similarity Extended to Irregular Regions of Interest (ROI-SSIM) (83), 

and the Local Similarity Measure (LSIM). The DSC was calculated to evaluate 

segmentation results, and values ranged from 0.73 to 0.9 for prostate, bladder, 

rectum and femur heads. The MAE±SD was 45.7±4.6 HU, and the average 

difference of D98 in the PTV was -0.14%. 

 

4. Discussion  
 

Tables 1, 2, 3 and 4 represent the classification of methods with the datasets, 

body regions, MR sequences and some numeric results of pseudo-CT images 

generated using several methods. From the tables, It is clear that most of the 

research focused primarily on the brain and secondly on the pelvis regions whereas 

poor work concentrated on the liver. The MAE ranged from 80 HU to 137 HU and 

from 36.4 HU to 74 HU for the brain and pelvis, respectively, which are within 

acceptable ranges.  

The use of more specialized MR sequences does not seem to improve results 

remarkably except having the bone visualization feature as a bonus. In addition, we 

notice a recent increasing interest in the Dixon MR sequence since it has the 

advantage of producing multiple contrast images with a single acquisition. As well 

as the incorporation of segmentation techniques which is taking place to account 

for different tissues present in the body. 

Despite the clinically acceptable performance results of these approaches. Each 

class of methods presents some drawbacks and limitations that should be taken into 

consideration and could extend the field of research in MRI-only RT. Approaches 

that are based on using segmentation algorithms suffer from segmentation errors, 

which can result in a misclassification of voxels. Moreover, the bone is often 

ignored because the standard MR sequences do not show any signal from the bone. 

Some research has investigated the use of other more specialized MR sequences 

that are capable of detecting signals from the bone using two Times of Echo (TE) 

after the radio frequency (RF) excitation. This type of sequence is called Ultra-short 

Echo Times sequences (UTE) (85, 49, 27, 86, 87, 88, 89, 90, 33). It relies on 

measuring early relaxation signals from cortical bone structures. Another 

specialized MR sequence for detecting the bone signal is Zero-Echo Time imaging 

(ZTE) (91, 92). Delso et al.  (91) showed that the bone segmentation using ZTE 

sequences performed better than the UTE-Based segmentation. However, these 

techniques are limited by their expensive implementation requirements and long 

acquisition time. Furthermore, whole body UTE imaging results in increased noises 

because of the short relaxation times of the cortical bone (93).  

Other attempts to detect the bone combined Short-TE sequences with Dixon 

pulse sequences in a fuzzy C-means framework to determine tissue classes 

including cortical bone (94, 33, 34). Techniques incorporating machine learning 

schemes to segment the bone seem very promising;  Bredfeldt et al.  (41) segmented 

the contours of the vertebra bone from fat images using a learning approach (43, 

42) and Liu et al. (39) applied a bone shape model to detect the pelvic bone; in 

addition, Femur bone was detected using 3D connected component analysis.  
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Table 1. Intensity-based approaches for generating pseudo-CT from MRI data. 
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Table 2. Segmentation-based approaches for generating pseudo-CT from MRI data. 
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A
tl

a
s-

b
a

se
d
 

Method Organ Datasets MRI sequences Reported results 

Atlas 

fusion and 

segmentatio

n (75) 

Pelvis  

12 patients 

with loco-

regionally 

advanced 

rectal 

cancer 

MRI Dixon 

volumetric 

interpolated T1-

weighted sequence. 

Mean ± SD (Absolute mean ± SD) 

Fat Soft-tissue Bone 

2.2 ± 5.5 

(5.6 ± 4.5) 

−2.0 ± 4.1 

(5.0 ± 3.9) 

−1.5±5.0 

(4.1±2.2) 

Multi-atlas 

information 

propagation 

(70) 

Brain 

12 patients 

(optimisati

on) 

41 patients 

(validation

) 

T1-weighted MR 

sequence. 

Average MAE±SD Average ME±SD 

121±17 HU -7.3±23 HU 

Electron 

density 

mapping 

for MRI 

(69) 

Pelvis  

37 patients 

with 

prostate 

cancer 

 T2 fast spin echo 

FSE sequence; 

 T2* gradient echo 

sequence; 

 Whole pelvic fast 

spin echo FSE 

sequence. 

Mean ± SD (HU) 

Rectum Bladder Bone prostate 

54 ±143 9 ±6 
340 

±85 
42 ±25 

Unifying 

probabilisti

c fusion 

(17) 

Brain 

9 patient 

with brain 

tumour 

T1-weighted rapid 

gradient echo 

sequence. 

MAE± SD Accuracy 

126±25 HU 86.6% 

Atlas 

registration 

with fusion 

(71) 

Brain  

26 patient 

with 

paediatric 

brain 

tumour 

T2-weighted Turbo 

Spin-Echo (T2 TSE) 

prior to the injection 

of contrast agent. 

 

RMSD±SD 
Correlation 

coefficient 

ME

AN6 

ME

AN1

2 

PRGP1

2 

M

E

A

N6 

ME

AN

12 

PR

GP1

2 

224

±36 

HU 

219

±35 

HU 

207±33 

HU 

0.

78

7±

0.

06 

0.79

8±0.

059 

0.81

9±0.

058 

Template-

based (66) 

Brain  

 

4 patients 

 

 

High-resolution 3D 

T1 weighted 

volumetric MR using 

MP-RAGE 

sequence. 

Overestimation of the reconstructed 

radioactivity up to 9% 

Combined 

deformable 

registration 

(67) 

Brain 

17 brain 

tumour 

patients 

/ 

Mean distance 
Mean HU 

differences 

External 

contour 

Bony 

anatomy < 2 HU 

1,26 mm 2.15 mm 

Segmentati

on and 

pseudo-CT 

generation 

(68) 

Pelvis  

39 patients 

with 

prostate 

cancer 

T2-weighted MR 

sequence 

Paired t-test 

>0.09 

Maximum 

probability 

Multi-Atlas 

(74) 

Brain  27 patients 
T1-weighted MR 

sequence 

Voxel classification error 

7.81% ± 1.00% 

Landmark 

image 

registration 

(76) 

Phanto

m  
Phantom 

T2-weighted MR 

sequence  

MAE±SD (prostate) 

31.3±27.3 HU to 37.3±35.8 HU 

Atlas-based 

regression 

(72) 

Brain  10 patients 

T1-weighted 3D 

spoiled gradient 

recalled echo 

sequence  

MAE ± SD 

113.4±17.6 HU 

Table 3. Atlas-based approaches for generating pseudo-CT from MRI data. 
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Table 4.Hybrid approaches for generating pseudo-CT from MRI data. 

Intensity-based approaches assume a direct link between MR voxel values and CT 

values. However, this link cannot be characterised (78). This is because tissues like air and 

bone have different CT values whereas they present no signal on MR images. Moreover, the 

use of machine learning technique could be advantageous. Nevertheless, sufficient 

knowledge must be incorporated to improve the prediction quality, but the training time 

relatively increases with respect to the increased size of required training data sets. Edmund 

et al. (45) investigated the geometric and dosimetric performance of three intensity-based 

approaches using UTE MR sequences, namely: threshold-based segmentation, Bayesian 

segmentation, and statistical regression. In the threshold-based approach, thresholds are set 

manually to define tissues based on inspection of MR intensities. Voxel values are assigned 

according to echo times TE1 and TE2 intensities, and four classes of tissues were defined. 

The second approach is based on the Expectation Maximization(EM) algorithm, which 

estimates a probability that each voxel belongs to a specific tissue class, and then voxels are 
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assigned to the class with the highest posterior probability. The regression-based approach 

uses both MR and CT data to train a regression model based on the EM algorithm that 

predicts a pseudo-CT for an untrained MR image. The investigation was performed on five 

patients; results show that the regression-based approach gave the best results in terms of 

geometric and dosimetric performances. Whereas, the other two approaches did not show a 

good correlation between geometrical agreement. 

Approaches that rely on deformable image registration algorithms make the success of 

pseudo-CT generation related to the accuracy of registration; moreover, image registration 

introduces geometric uncertainties due to inter-patient variations and abnormalities. To assess 

the quality of deformable registration, Schreibmann et al.  (67) developed a three-dimensional 

surface comparison tool that extracts a specific surface from the pseudo-CT and the simulated 

CT (gold standard) to compare the differences. Demol et al. (82) studied a specific case in 

detail with the aim of testing the performance of their proposed method (see subsection 3.4 

for details of the approach) with atypical body structures. The case studied had a part of the 

skull bone removed surgically. The generated pseudo-CT presented additional bone in the 

location where the patient’s MR image did not have any. Furthermore, the number of atlas 

images used to generate the pseudo-CT should be carefully selected (95) and the acquired 

atlas dataset should be representative of standard anatomy. The use of multi-atlas data fusion 

techniques (74, 17, 71, 70, 75, 96, 69, 72, 97, 98) appears to give improved results compared 

to the single atlas technique since the pseudo-CT values will be predicted from several CT 

atlas images. Mérida et al. (74) evaluated four multi-Atlas methods for pseudo-CT 

generation, their maximum probability approach (74) and three multi-Atlas approaches; the 

first method is a multi-Atlas propagation and fusion technique (70). The second is a best_10 

approach where ten best-ranked deformed CT atlases are fused using non-weighted average 

and the last approach consists of fusing all deformed atlas CT images with a non-weighted 

average. Comparison results showed that the best_10 method performed better giving small 

voxel classification error 7.57 ± 1.05 compared to 7.95 ± 1.00, 7.81 ± 1.00 and 7.69 ± 1.04 

for the Average, Max probability and the multi-Atlas propagation and fusion methods 

respectively. 

Whelan et al. (99) evaluated the effect of electron density errors on dose 

calculation for the cervix cancer. They generated four pseudo-CT images using four 

methods: Atlas (100), homogenous bulk density assignment (16), rigid registration 

(101, 102) and bone bulk density (16). Comparison results show that the largest 

errors were observed for the bone density method when the bone is assigned the 

value of 1.21 g/cm3 concluding that a wrong assignment of electron density values 

can result in dose changes when compared to the dose calculated on the gold 

standard CT. 

One concern that should be considered is geometric distortions related to non-

linearity in spatial encoding gradients and chemical shift distortions caused by 

susceptibility effects. The quality of the generated pseudo-CT could be affected 

negatively if the used MR sequences contain distortions.  Many research papers 

presented techniques to correct for geometric distortion (103) and chemical shift 

(104). In this scope, Stanescu et al. (84) investigated on the effect of distortion 

correction of MR images on dose calculation. The corrected MR images were auto-

segmented to define head structures (scalp, bone,and brain). Bulk CT values were 

assigned to these segmented regions. The dose calculations generated on these 

images ware compared to those generated by the conventional MRI-CT workflow.  

Percentual differences of the mean dose differences ranged from 0.2 % to 0.3 % for 

four patients. Beavis et al. (13) proved that it is possible to perform MRI-only RT 
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by using a small field of view, an increased receiver bandwidth and a fast spin echo 

acquisition sequence. 

The reported results for most of the above-mentioned research works are in 

acceptable ranges and confirm the success of pseudo-CT in replacing the original 

CT in RT.  This field of research is emerging towards the use of MRI as the only 

modality in RT especially with the introduction of hybrid PET/MR systems for 

attenuation correction and it is opening research opportunities to improve the field 

of MRI-alone RT. 

 

5. Conclusion  
 

This paper aimed to review approaches for pseudo-CT generation from MR images 

for an MRI-only radiotherapy treatment workflow. We presented a classification of 

these approaches, discussed their strengths and weaknesses and covered some 

possible solutions and future orientations. Lately, research is oriented towards 

including specialised MRI sequences such as UTE and ZTE despite their complex 

implementation. Furthermore, new approaches and techniques are being integrated 

to deal with the bone visualisation issues. We notice that techniques that follow a 

segmentation scheme are being more established for the success brought by new 

segmentation algorithms that are implemented based on novel algorithms using 

deep learning or machine learning methods. We conclude that the quality of the 

generated pseudo-CT depends strongly on the applied approach and the used MR 

sequences. Although many approaches seem promising, one cannot choose the best 

method compared to the others; this is because different MR sequences, parameters, 

datasets and test metrics are used to generate the pseudo-CT and assess its quality. 

Hence, a benchmark is needed to set in common performance metrics.   
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