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Abstract.  

Today, researchers are increasingly using manual, semi-automatic, and automatic segmentation 

techniques to delimit or extract organs from medical images. Deep learning algorithms are 

increasingly being used in the area of medical imaging analysis. In comparison to traditional 

methods, these algorithms are more efficient to obtain compact information, which considerably 

enhances the quality of medical image analysis system. In this paper, we present a new method to 

fully automatic segmentation of the sphenoid sinus using a 3D (convolutional neural network). The 

scarcity of medical data initially forced us through this study to use a 3D CNN model learned on a 

small data set. To make our method fully automatic, preprocessing and post processing are 

automated with extraction techniques and mathematical morphologies. The proposed tool is 

compared to a semi-automatic method and manual deductions performed by a specialist. Preliminary 

results from CT volumes appear very promising. 
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1. Introduction 

The sinuses anatomy are complex and very variable [1]. The sphenoid sinus cavity 

is the most variable from person to others. It is an essential landmark in surgery but 

it is hard to isolate [2-3-4]. Fig. 1 shows a diagrammatic representation of the 

sinuses location. Another difficulty is that the sinuses can also to divide into 

multiple niches that communicate the one with the other through an incomplete 

bone wall, which further complicates their location [5]. Complexities of spheroidal 

sinus surgery are easy to avoid if we understand its anatomical features [6]. 

Sphenoid bone has a deep anatomical location in the skull making it difficult to 

approach. This deep location may be advantageous in the case of forensic 

identification. Unlike other sinuses, the sphenoid sinus is well preserved from 

traumatic damage of external causes. Sphenoid sinuses can be classified into four 

types [7]: 

Conchal: complete missing or minimal sphenoid sinus; 
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Pre-sellar: the posterior wall of sphenoid sinus is in front of the anterior wall of the 

sella turcica 

Sellar: the posterior wall of the sphenoid sinus is between the anterior and posterior 

walls of sella turcica 

Post-sellar: the posterior wall of sphenoid sinus is behind the posterior wall of the 

sella turcica 

This classification is based on basic aspects (height, width and depth) and can be 

used to predict the potential for accidental injury, but they are also useful for 

individual identification as can be seen in [8]. 
 

CT scans images are an excellent choice for assessing the anatomy of the sinus 

because they provide an accurate craniofacial assessment of the bones and the 

extent of their pneumaization [9-4]. By segmenting 3D CT-images of the sphenoid 

sinus, we can make useful measurements of its volume anatomy [10, 19, 20]. Image 

volume segmentation is a technique of marking each voxel in an image and 

assigning it to a group of voxels defining an anatomical structure. This technique 

has wide and varied applications in medical research and computer-assisted 

diagnosis. It makes it possible to extract and recognize organs. It is used too to 

improve the visualization and permit quantitative measurements. Segmentation is 

essential too for the construction of anatomical atlases, the search for organ 

structure shapes and monitoring their evolution through the age [11]. Artificial 

Intelligence techniques relying on machine learning, more and more, are used for 

the analysis and segmentation of medical images. In the last years, the appearance 

of deep learning techniques has contributed significantly improving

 
Fig. 1. Diagrammatic representation of paranasal sinuses. 
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medical image analysis, in which convolutional neural networks (CNNs) are used 

and that give the ability to learn significant patterns automatically and extract real 

structures from images [3, 12]. One of the keys to the success of the CNN is that it 

is possible to use the preformed models directly to perform tasks other than those 

initially planned. It is now easy to download a learned model and then adjust it 

slightly to adapt it to the application in question [13]. In this work, we are proposing 

a new method for the automatic segmentation of the sphenoid sinus represented on 

CT scan volumes using a 3D CNN architecture. The proposed method is robust, 

fast, and efficient. 

2. Material and method 

Our automatic sphenoid sinus segmentation method consists of three main steps, 

where the result of the step is the input of another one. The first step is a 

preprocessing step; we create and transform automatically the images volume given 

from a PACS to an image of the region of interest. Then, we perform a segmentation 

with 3D Deep CNN [14] that we adapted and parameterized to produce highly 

accurate sinus segmentation. Finally, postprocessing based on mathematical 

morphology operations to perform a sinus measurement and refine a segmentation 

(Figure.1). This splitting in stages allowed us to improve and simplify the use of 

CNN at the CPU level. In the following we describe the method stages: 

2.1 The automatic ROI extraction for the CT-image 

The preprocessing step uses some interesting techniques with slight transformations 

that are adapted to improve the effectiveness of the specific type of segmentation 

method used in the next step. These transformations are made so those common 

parameters can be used for all images of all intensity ranges. In other words, we 

aim to operate only on a reduced 3D region, a region of interest centered on the 

sinus at issue and not on the whole image. This region of interest must be the same 

in terms of dimensions for all images in the data set of training or test. To achieve 

this, first a target image with a well-oriented head and a clear sinus was chosen. We 

manually traced a large rectangle, enough to contain the sinus whatever its shape, 

size does not exceed 200  200  200 pixels. This rectangle will also serve as a 

reference bounding-box. Then, all other database images are registered onto this 

target image with its bounding box. As the images are coming from different persons, 

we choose to use a rigid registration, allowing correction of the different positions and 

orientations arising from the clinical exam. Since the natural size of the skulls is different 

from one person to another, we have avoided using affine registration [15], which risks 

distorting the estimation volume that will be used later as a parameter for identification. 

Thereby, we were able to build a new database consisting only of regions of interest, with 

the same size as the reference box. 
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Fig. 2. Flow chart of the sphenoid sinus segmentation scheme. 

 
2.2 Sinus Segmentation with Deep 3D CNNs 

  

This step employs the Deep Medic [16] architecture realized as open source ar-

chitecture for medical images analysis [17], it is an algorithm with an adjustable 

number of deep layers, double-pathway and 3D CNN, created to segment the 

volume images brain lesions [14]. This architecture segments MRI 3D images 

corresponding to a multi-modal 3D patch at multiple scales. In our study we have 

used the lightweight version CPU-based of this software to drive our sinus 

automatic segmentation model; in our case, we use one modality and a CT images 

format. This CPU model gives a satisfactory solution to our problem. The reliability 

of this algorithm was evaluated when fewer training data were available or filters 

were used, and this architecture was referenced on the BRATS 2016 Challenge, 
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where it performed exceptionally well despite the simplicity of the pipeline [17]. It 

was demonstrated that it is possible to train this 3D CNN on a small dataset of 28 

volume CT scan images. This network delivered a good result on the task of 

segmenting ischemic stroke lesions, accomplishing a mean Dice of 64% (and 66% 

after post-processing) on the ISLES 2015 training dataset, ranking among the top 

entries [14]. This architecture [16] is based on: 
— Two paralleled convolution paths that process inputs at multiple scales to 

provide a large receiver field for final classification while limiting 
calculation costs. 

— A small convolutional kernel. That gives efficiency to construct CNNs at 
depth without significantly increasing the number of parameters that can be 
driven and inspired by the Very deep convolutional networks (VGG) [18]. 
Designed efficient and productive 3D CNNs thanks to the much smaller 
calculation required for convolution with small 33kernels. 

— A complete convolutional method on image segments in the formation and 
test phase. 

The main algorithm steps, which make up this architecture, are presented in this section. 

The DeepMedic theoretical background is detailed very clearly in [14]. A summary of each 

step, which makes up this algorithm follows: 

 

1- Each layer l ∈ [1,L] consists of C l  Feature Maps (FM) also referred to as 

Channels .  

2- Every FM  represents a group of neurons that detect a particular pattern (a feature, 

in the channels of the previous layer). 

3- A pattern  is defined by kernel weights associated with the FM 

4- If the neurons of the m t h  FM  in the l t h  layer are arranged in a 3D grid, their 

activations constitute the image defined by 
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with  yL
c is the activation of the FM at position l G N3 

8- The size of the neighborhood of voxels ϕl in the input that influences the activation 

of a neuron is a receptive field, increases at each subsequent layer and is given by the 

3D vector: 
{ , , } { , , } { , , } { , , }

1 ( 1)
x y z x y z x y z x y z

l l l lk     , (3) 

where 

— kl ,and 𝜏l ∈ N3 are vectors expressing the size of the kernels and stride of the receptive 

field at layer l; 

— 𝜏l= (1,1,1 is given by the product of the strides of kernels in layers preceding in this 

system; 

— ϕCNN = ϕL is the CNN receptive field; where the receptive field of a neuron in the 

classification layer corresponds to the image patch that influences the prediction for 

its central voxel. 

9- The dimensions of the FMs in layer l is given by 
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10-If an input of size δin is provided, δin = ϕCNN is a size of input patch in the common 

patch-wise. The FMs of this classification layer have 13.  

11-CNNs are trained patch-by-patch, and random patches of size ϕCNN are extracted 

from the training images.  

12-To maximize the log-likelihood of the data or, equally, minimize the cross-entropy 

via the cost function  

1 1

1 1
( ; ; ) ( ( , )) ( )

B B
i i i i

D c

i i

J I C log P Y c I log p
B B

 
 

         (5) 

where 
B  is the size of batch, which is then processed by the network for one training iteration 

of Stochastic Gradient Descent (SGD); 

The pair (Ii, Ci), ∀i ∈ [1,B] is the i th patch in the batch and the true label of its central 

voxel; 

The scalar p C
i is the predicted posterior for Class Ci; and   

Regularization terms were omitted for simplicity. Multiple C i Sequential optimization 

steps over different batches gradually lead to convergence. 

13-The classification layer is the activation of the last layer of CNN. 

14-Memory requirements and computing times increase with the batch size, which is 

the limitation of 3D CNNs, DeepMedic uses a strategy that exploits the dense inference 

technique on image segments. Following from Eq.(2), if an image segment of size 

greater than ϕCNN is given as input to the network, the output is a posterior probability 

for multiple voxels V =Q δl
i. If the training batches i={x,y,z} are formed of B segments 

extracted from the training images, the cost function Eq.(3), in the case of dense-

training[14] becomes 

1 1

1
( ; ; ) ( )

B V
v v

D s s s

s v

J I C pc x
BV


 

  
, (6) 

where Is, and C s  are the s-th segment of the batch and the true labels of its v-th 

voxel, x v  the corresponding position in the classification FMs and pcv the 

output of the softmax function. Factor V increases the effective lot size without 

the corresponding increase in calculation and memory requirements 
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DeepMedic architecture is also a deep architecture based on small 33 kernels 

that are faster to convolve with and contain fewer weights [14]. 

 

 
Fig.3. The architecture of the DeepMedic for automatic sphenoid sinus 

segmentation. 

The 3D CNN has been adapted for five layers, with a receptive field of size 173 and 

1 modality. The classification layer (the last layer) is implemented like a 

convolutional layer with 13 kernels, which enables efficient dense inference. When 

the network segments an input it predicts multiple voxels simultaneously, one for 

each shift of its receptive field over the input (see Figure 4). The training time 

required for convergence of the final system is roughly 20 minutes using a CPU 

Intel I5-7300 with 22.5 GHz. Segmentation of a 3D scan of a sphenoid sinus 

requires 1 minute. 

2.3 Post-processing 

The segmentation result obtained by the 3D CNN of the precedent step method does 

not make it possible to distinguish between the sphenoid sinus from the other 

sinuses. The nasal cavities as well as the paranasal sinuses have almost the same 

gray level intensity. To differentiate the sinuses, we have used a prior knowledge 

about the positioning of these sinuses. Indeed, the sphenoid sinus is the deepest 

cavity starting from the front face, and therefore it is the first cavity encountered 

from the back of the skull at the median. Thus, using the operations of mathematical 

morphology we have been able to locate the sphenoid sinus. We have first applied 

an erosion operation to the segmented image, which allows removing the residues, 

but especially the potential connections between the sphenoid sinus and other 

cavities. More precisely, erosion operation allows to remove the ostium and to well 

separate the two hemisinus of the sphenoid sinus. Once the sphenoid sinus cleared, 

we have subsequently calculated the centers of gravity of all the regions on the 

image. After sorting the centers coordinates along the coronal axis, the deepest 

center corresponds, of course, to the region of the sphenoid sinus, or more precisely 

corresponds to the deepest hemisphere. When the hemisphere is segmented from 

the rest of the cavities, a dilation operation (with the same parameters as the 

previews erosion) is applied to recover some details of the shape lost during erosion 

operation. As can be seen, the detection of the two hemispheres of the sinus is 

sequential. Indeed, after removing the first 
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3. Result 

3.1 Dataset 

The data set used includes 24 head CT volumes images, which were taken on a CT 

scanner with several helical detectors. All CT scans with a disease involving the 

sphenoid and its surroundings structures, but also with mucosal thickening of the 

sinuses, mucosal sinus thickening or an anomaly in the content of the sinuses were 

not included in the study. After the preprocessing step, 3D CT-images less than 200 

x 200 x 200 have obtained where 15 images were used to train the algorithm 

(training and validation) and 9 images to test the training. A manual segmentation 

of spheroid sinus for each image on train data set was performed manually, so we 

did this assisted by a radiologist. 
3.2 Results 

An example of 3 segmentations is reported in Figure 4. It shows the result of the 

segmentation and the extracted sphenoid sinus as explained in the previous sections. 

The segmentation is performed using the 3D CNN and affine with the 

morphological operations. 

Fig.4. Segmentation examples for 3 CT-images, shows a superior, left, interior and 

front views. 

3.3 Validation 
To evaluate the precision and reliability of our automated approach, we have 

compared the results of segmentation of the same sphenoidal sinus of our tool with 

the ITK-SNAP a semi-automatic segmentation and with manual segmentation 

conducted with an experienced radiologist using a standard procedure. Each image 
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segmented by accurately drawing the contours of the sphenoid sinus following the 

surface of the inner bone in an axial direction. An example of the manual 

segmentation process of the spheroid sinus of a slice is presented in Figure 5. 

 
Fig. 5. Example of the process of manual segmentation on one slice. From left to right: an 

axial, sagittal and coronal view. 
The DSC (Dice Similarity Coefficient , HD (Hausdorff distance ), and MAD (Mean 

Absolute Distance), were used for evaluating the proposed method. The dice Coefficient 

(DSC), one of the most commonly way for evaluating segmentation results, indicates a 

level of similarity between the reference (manual segmentation) and segmented result 

(automatic segmentation), the formulation of DSC is given by: 

1 2

1 2

2 ( )
,

( ) ( )

N S S
DSC

N S N S





 (7) 

 

where S1 and S2 represent the obtained segmentation and the ground truth respectively 

(manual segmentation), and N defines the number of pixels. DCS ∈ [0,1], so that  the closer 

DCS value to 1, is the better segmentation.  

The HD is metric  that represents the spatial distance between two point sets, i.e., is the 

maximum distance between two point sets C1 and C2, from each point a ∈ C1 to point b  ∈ 
C 2 and vice versa. HD is defined as follows: 

HD (C1,C2) = max(h(C1,C2),h(C2,C2)). (8) 

The MAD metric is given as follows: 

1 2 2 1

1 1

1 1 1
( , ) ( , ) ( , ) ,

2

n m

i j

i j

MAD C C d a c d b c
n m 

 
  

 
  (9) 

where the distance between the point ai, and the closest point,  b j  is given by  

d ( a i,  C2)= min| |bj - a j | | ,     (10)  

with bj ∈ C2. 

The three obtained metrics DSC, HD, and MAD for all segmentations appear in Tables1 

along with a comparison between the proposed automatic segmentation and semi-

automatic clustering of ITK-SNAP for the nine CT- images respectively with manual 

segmentation. 
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Table 1. Detailed results of comparison between the proposed automatic and semi-

automatic (ITK-SNAP) segmentation for 9 volumes, using respectively DSC, HD, and 

MAD distances. 
CT Volumes 

123456789 Our 

results   

96.10 95.59 92.10   95.71 96.84 95.91 95.48 96.87 96.52 

ITK-SNAP results  96.10 95.74 96.74  95.21 97.15 96.16 95.77 96.33 95.78 

Our results 4.09 7.02 6.62 2.71  0.96 2.08 1.58 1.85 2.22 

ITK-SNAP results  6.88 6.61 2.06  0.93 2.10 1.54 2.01 2.20 4.08 

Our results 10.43 15.43 19.46 13.32  3.79 8.07 4.76 5.15 8.39 

ITK-SNAP results  15.43 19.46 6.29  3.87 8.19 4.67 5.18 8.41 43.76 

4. Discussion 

CT and Augmented Reality (AR) can improve the work of otorhinolaryngologists because 

these tools help to investigate target and risk structures [21]. AR can be smoothly 

incorporated into the operating workflow.  

The sphenoid sinus segmentation is a specific interesting problem and using Deep Learning 

(DL) to solve it is novel [22, 23, 24]. 

The methodology first cogitates ROI removal, followed by the 3D CNN application and 

some preprocessing. The methodology employs a standard 3D CNN previously used for 

medical image segmentation and analysis called DeepMedic.  

Using 3D CNNs help deal with handcrafting and uncertainties but may pose problems 

related to Content-Based Image Retrieval (CBIR) [23, 25]. There are already end-to-end 

DL solutions, e.g., V-net or Seg-Net [26, 27] related to the segmentation. Later, the authors 

may compare the proposed methods with other architectures as well as investigate the bias.  

The chosen dataset is small since 15 annotated images have been used for training and 9 

images for testing. Hence, it is very uncertain whether better conclusions can be made using 

other ampler datasets. 

There is no evaluation of different CNN architectural variants or different types of 

optimizers. To improve this scheme, the authors should think about what the community 

can learn from the sphenoid sinus segmentation problem such as   

(i) what type of data are specially hard;  

(ii) similarities between this problem and other medical imaging segmentation 

applications;  

(iii) if there is a novel solution for that specific problem;  

(iv) if this kind of networks can be trained faster;  

(v) if the design can be trained with the same precision;  

(vi) how to pick up the right amount of data; and  

(vii) the model is trained in a very constrained setting, where imagery containing 

fractures and so on has been removed; hence, investigations on how to train 

the models with all the data instead of removing the samples with fractures 

must be taken. 

5. Conclusion 

This reading tackled studies dealing with automatic segmentation of the sphenoid sinus via  

3D CNN. The present study is the first initiative that found a decent correlation between 

the manual and automated sphenoidal sinus volume estimation techniques.  

The proposed automated extraction of the sphenoidal sinus volume based on CT exams 

gives robust and accurate results close to the manual method where the reported outcomes 



Medical Technologies Journal, Volume: 3, Issue: 1, January-March 2019, Pages: 334-346. Doi : 

https://doi.org/10.26415/2572-004X-vol3iss1p334-346 

 

344 

 

 

are preliminary and may set up a good baseline if appropriately compared to other 

methodologies. This project results suggest that this automated implementation could be 

applied in clinical practice. It does not entail substantial user knowledge, besides being 

reproducible and fast. 
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