Exploration of the antithrombotic effect of a C type lectin purified from Cerastes cerastes venom by protein-protein docking

Type of article: Conference abstract

Fatah Cherifi1, Samah Saoud2, Fatima Laraba-Djebari3

- 1 Research Director, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.
- 2 Ph.D in Biochemistry-Immunology and Innovative Biotherapies, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.

3 Professor, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria. cherififatah@yahoo.fr

Abstract:

Background:Thromboembolic diseases are a major clinical problem due to their high prevalence and their often fatal consequences. In the present study, an anticoagulant galactoside binding C type lectin "Cc-Lec" was purified and characterized.

Methods: Cc-Lec was purified by affinity chromatography on a column of Sepharose 4B coupled with D-lactose. Its homogeneity was verified by SDS-PAGE and ESI-MS. Cc-Lec 3D structure modelization was achieved by homology to Convulxin a snake venom C type lectin. Cc-Lec anticoagulant effect was explored *in vivo* by i.p. administration to mice, *invitro* by native PAGE analysis and *in silico* protein-protein docking approach.

Results: Cc-Lec is a *34 271,59 Da* protein, composed of 160 residues of amino acids for each subunit. Its 3D structure is organized into a homodimer crosslinked with a disulfide bridge and composed of three alpha helices and seven beta strands for each monomer. Cc-Lec functional characterization revealed a durable anticoagulant effect *in vivo* after 6 and 48h of i.p. administration to mice. This anticoagulant effect is mediated by interaction with FXa and FIXa as showed by native PAGE analysis. Moreover, protein-protein docking results reinforced this data and showed that Cc-Lec interacts with coagulation factors X and IX through their · -carboxyglutamic domains. The interaction with factors X and IX requires calcium or calcium and magnesium ions respectively.

Conclusion: The anticoagulant effect of Cc-Lec makes it a promising pharmacological target for the diagnosis and/or the therapy of the thromboembolic diseases.

Key words: C type lectin, Molecular docking, Anticoagulant, Coagulation factors, Treatment of thromboembolic diseases

1. Conflict of intereststatement

This article was selected from ICHSMT'17 abstracts book.

2. Authors' biography

No Biography

3. References

No references