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Abstract:    
Background: The second leading deadliest disease affecting women worldwide, after  lung cancer, is 

breast cancer. Traditional approaches for breast cancer diagnosis suffer from time consumption and 

some human errors in classification. To deal with this problems, many research works based on machine 

learning techniques are proposed.  These approaches show  their effectiveness in data classification in 

many fields, especially in healthcare.      

Methods: In this cross sectional study, we conducted a practical comparison between the most used 

machine learning algorithms in the literature. We applied kernel and linear support vector machines, 

random forest, decision tree, multi-layer perceptron, logistic regression, and k-nearest neighbors for 

breast cancer tumors classification.  The used dataset is  Wisconsin diagnosis Breast Cancer. 

Results: After comparing the machine learning algorithms efficiency, we noticed that multilayer 

perceptron and logistic regression gave  the best results with an accuracy of 98% for breast cancer 

classification.        

Conclusion: Machine learning approaches are extensively used in medical prediction and decision 

support systems. This study showed that multilayer perceptron and logistic regression algorithms are  

performant  ( good accuracy specificity and sensitivity) compared to the  other evaluated algorithms.  
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1. Introduction  

Breast cancer (BC) is among the major deadliest diseases affecting women around the 

world [1]. It occurs because of the uncontrolled growth of the cells in breast tissue. BC 

diagnosis  based on histopathological data can provide inaccurate  outcomes. In last 

decade, machine learning (ML) techniques are widely used in diagnosis of BC to help 

pathologists and physicians in early detection, decision making process and giving a 

successful plan for treatment.  

In the literature, several algorithms for breast cancer diagnosis and prognosis are 

proposed. In this paper we provide a practical comparison between kernel and linear 

support vector machines (K-SVM, L-SVM respectively), random forest(RF), decision 

tree (DTs), multi-layer perceptron (MLP), logistic regression (LR), and k-nearest 

neighbors (k-NN) which are the most used  algorithms in several researches [2-4]. The 

goal of this study is to evaluate the performance of these algorithms in terms of 

effectiveness, efficiency and accuracy,. We conduct this comparative study to find out 

the best approach to be used in learning models, to apply it on new datasets and 

improve its performance by combining it with other technologies such as fuzzy 

learning, convolutional neural networks, genetic algorithms …etc.  

In the rest of the paper, we will explain our experiment, the materials and the methods, 

in Section 2. Then, we will present the obtained results in Section 3, and finally, we 

present our conclusions and future works in Section 4. 
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2. Materials and Method 

A. Related works  

Classification is one of the most crucial machine learning tasks. It is applied in many 

research works using several medical datasets in order to classify breast cancer cells. 

In this section, we present some works that apply ML techniques for early BC 

diagnosis. 

Abdel-Zaher and Eldeib [5] proposed a computer aided diagnosis (CAD) scheme for 

BC detection. Deep belief network unsupervised learning and back propagation 

supervised learning are used in this system. It is evaluated using the  Wisconsin Breast 

Cancer Dataset (WBCD) and gave an accuracy of 99.68% on. 

Thein and Khin [6] presented an approach for BC classification.  The proposed system 

applied the island-based training method on the Wisconsin Diagnostic and Prognostic 

Breast Cancer data sets. This approach gave good accuracy and low training time by 

using and analyzing two migration topologies.  

Ibrahim and Siti [7] applied MLP neural network and enhanced non-dominated sorting 

genetic algorithm (NSGA-II) for BC automatic classification. Compared to other 

methods, this work improved classification accuracy by optimizing the ANN 

parameters and network structure. 

Guan et al. [8] proposed breast tumor classifier. They  used Wisconsin Breast Cancer 

Dataset to evaluate their  diagnostic model called self-validation cerebellar model 

articulation controller (SVCMAC) neural network. The advantages of this method are 

simple computation,  fast learning, and good generalization capability.  

Kumar et al. [9] proposed an ensemble voting classifier. It combines J48, Naïve Bayes, 

and SVM on WBCD to improve the decision-making approaches in the prediction of 

BC survivability. The dataset is preprocessed. Then, it was trained and tested using 

10-fold cross validation. The combined model gave good accuracy.  

Mittal et al. [10] presented a hybrid classifier for BC diagnosis. The classifier is a 

combination of  self-organizing maps (SOM) and stochastic gradient descent (SGD) 

on WBCD. The proposed system improved the accuracy compared to other works in 

state of the art ML techniques. 

Haifeng et al.  [11] proposed an SVM-based ensemble learning model for BC 

diagnosis. The proposed model includes C-SVM and ν–SVM structures, and six types 

of kernel functions. It was tested using two datasets: the WBCD (original and 

diagnosis) datasets, and the Surveillance, Epidemiology, and End Results (SEER) 

dataset. The system presented a good accuracy compared to works based on single 

SVM. 

Emina et al. [12] proposed a BC classifier applying several machine learning 

algorithms. Logistic Regression, Decision Trees, RF, Bayesian Network, MLP, Radial 

Basis Function Networks (RBFN), SVM, Rotation Forest and genetic algorithm-based 

feature selection were compared and the Rotation Forest model with GA-based 14 

features The system gave the best results (accuracy 99.48%). The system was 

evaluated using diagnosis and original WBCD datasets.  

Zheng et al. [13] applied K-means and support vector machine (K-SVM) algorithms 

to develop a hybrid system for breast tumors classification. The method is tested on 

WDBC dataset and gave an accuracy of 97.38%. 

Arpit and Aruna [14] developed a genetically optimized neural network (GONN) for 

BC classification. They improved the neural network architecture by introducing a 

new crossover and mutation operators. The proposed approach is evaluated by using 

WBCD and presented good accuracy. 
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By this study,  we aim to employ MLP, L-SVM, K-SVM, DTs, RF, KNN, NB, LR and 

NB on the Wisconsin Breast Cancer (Diagnosis) dataset to compare their performance 

(effectiveness and efficiency). 

B. Experiments  

In this section, a presentation of the experiments is given. 

a. Dataset 

In the literature, many studies used The Wisconsin Breast Cancer dataset (diagnosis). 

It is available in the UCI Machine Learning Repository.  It has 569 instances (Benign: 

357 Malignant: 212), 2 classes (37.3% malignant and 62.7% benign), and 32 attributes 

which are:   ID number, Diagnosis (M = malignant, B = benign), Radius (mean of 

distances from center to points on the perimeter), Texture (standard deviation of gray-

scale values), Perimeter (mean size of the core tumor), Area, Smoothness (local 

variation in radius lengths), Compactness (perimeter^2 / area - 1.0), Concavity 

(severity of concave portions of the contour), Concave points (number of concave 

portions of the contour, Symmetry, Fractal dimension (coastline approximation – 1), 

the mean, standard error and "worst" or largest (mean of the three largest values) of 

these attributes are computed for each image, resulting in 32 attributes)  [15].  

In this work, the  ML algorithms are evaluated using WBCD. 

 

b. Data Normalization 

The z-score standardization method is used to normalize the dataset. The used equation 

for calculating the z-score is given in (1), where, μm is the mean value of the attribute, 

δm is the standard deviation, 𝑥𝑚 is the raw data, and 𝑥𝑚
′  is the normalized data [16]. 

           𝑥𝑚
′ =

  𝑥𝑚− 𝜇𝑚

𝛿𝑚
                      (

c. Methods description 

Supervised learning algorithms are algorithms that learn on a labeled dataset, given 

training on input and output parameters [17]. In this case, the goal of computers is to 

learn a general formula which maps inputs to outputs. Predictive models developed in 

this type of learning are achieved using classification and regression techniques. 

Classification methods predict discrete variable however, regression techniques 

provide continuous variables. 

 Naïve Bayes (NB) 

NB is a probabilistic ML method. It calculates probabilities of different classes given 

some observed evidence [18]. It uses the maximum likelihood method for parameter 

estimation and  is appropriate for high dimensionality inputs. Equation (2) gives the 

probability of a class given predictor 𝑃(𝑐|𝑥), where 𝑃(𝑐|𝑥) is posterior probability,  

𝑃(𝑐)  is the class prior probability,  𝑃(𝑥|𝑐)  is the likelihood, and  𝑃(𝑥)  is the 

probability of predictor [ 4]: 

                                      𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
                                      (2)   

 Support Vector Machine (SVM) 

SVM algorithm consists of finding a hyperplane which separates classes [17]. It is 

suited for high dimensional inputs and memory efficient because it uses support 

vectors. SVM is a powerful algorithm; however its storage and computational grow up 

with the number of training vectors [18].             

 Decision tree (DT) 
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DT is a diagram having a tree structure, where each node represents a test on an 

attribute, each branch denotes an outcome of the test, and each terminal node detains 

a class label. It is used to classify input data points or predict output values given inputs 

[19]. It is efficient and capable of fitting complex datasets. 

 Random forest (RF) 

RF is a large number of decision trees which are ensemble [18]. In this method, each 

individual tree builds an output class then the average of predictions is taken.  The 

final result is generated by taking the mode of classes found separately [11]. 

 Logistic regression (LR) 

LR algorithm can be applied  for classification and regression tasks [19]. It is a 

statistical method for data analyzing. It aims to obtain the best fitting model which 

describes the relation between inputs and outputs.  

 K-Nearest Neighbor (K-NN) 

K-NN is the simplest machine learning method. It is non-parametric method used for 

both classification and regression. It consists of calculating the distance between the 

test data and the input and gives the prediction accordingly [18]. 

 Multilayer Perceptron (MLP) 

MLP is a feed forward supervised neural network for data classification. It is composed 

of many layers as a directed graph between the input and output layers. For the training 

task, MLP uses backpropagation method [18].  

3. Results and discussion  

The goal of this work is to compare the performance of NB, SVM, DT, LR, RF, k-NN 

and MLP. We used split method to divide the dataset: a training set (75%) to train the 

model, and a testing set (25%) to evaluate it. 

(75 × 569) / 100 = 426   training data 

569 – 426 = 143    testing data 

 

A.  Efficiency 

A confusion matrix is a performance measurement that provides information about 

real and predicted values resulting from a classification system. Table 1 is a description 

of a confusion matrix for a two class classifier.  

TABLE I.  CONFUSION MATRIX REPRESENTATION 

True 

value 

Predicted value 

Positive Negative 

Positive TP 
FN 

Negative FP 
TN 

      Where:  

- TP: malignant tumors (M) correctly predicted as malignant; 

- FP: benign  tumors (B) incorrectly predicted as malignant tumors (M); 

- FN: malignant tumor (M) incorrectly identified as benign tumor (B); 

- TN: benign tumor (B) correctly identified as benign. 

To compare true classes and predicted results, we use confusion matrices shown 

in figure 1. We note that both of MLP and LR correctly predict 140 instances from 

143 instances (87 benign instances correctly predicted benign and 53 malignant 

instance effectively malignant), and 3 instances incorrectly predicted (2 benign 
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instances predicted as malignant and 1 malignant instance predicted as benign). As 

a result, MLP and LR give the best accuracies. 

 

Fig. 1. Confusion matrices 

To check how our models are efficient, we build the ROC (receiver operating 

characteristic) curve presented in figure 2. ROC curve is used with binary classifiers, 

it is used to  understand the performance of a ML algorithm; it plots the TPR against 

the FPR [17].  The TPR and FPR are given in equation (3) and (4) [20]: 

TPR =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                    (3) 
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FPR = 
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
                                 (4) 

 TPR and FPR values are given in table 2. 

 
Fig. 2. ROC curve 

We can easily observe that MLP and LR are the best classifiers followed by other 

algorithms. 

B. Effectiveness 

To measure the performance of used algorithms, we conduct a comparison based on 

accuracy, correctly and incorrectly classified instances.  

Accuracy is a metric used for evaluating classification models. It gives the ratio of the 

total number of the correct predictions, its equation is given in (5) [21]:  

                             Accuracy = 
𝑇𝑃+𝑇𝑁

 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   × 100                                       (5) 

Table 2 and figure 3 show the obtained results. 

TABLE II.  PERFORMANCE MEASUREMENTS  

Evaluation 

criteria 

Classifiers 

MLP L-SVM K-SVM DT RF LR KNN NB 

Correctly 
classified 

instances 

140 138 139 137 139 140 137 136 

Incorrectly 
classified 

instances 

3 5 4 6 4 3 6 7 

Training 
accuracy 

 

0,988 0,99 0,988 1 0,957 0,988 0,98 0,93 

Testing 

accuracy 
0,979 0,96 0,97 0,958 0,972 0,979 0,958 0,95 

TPR 0.963 0.981 0.963 0.926 0.944 0.981 0.944 0.944 

FPR 0.011 0.045 0.022 0.022 0.011 0.022 0.034 0.045 
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Fig. 3. comparative graphs of used classifiers 

We can notice from figure 3, that accuracy obtained by MLP and LR (98%) is the best 

compared to accuracy obtained by KNN, DTs, RF, L-SVM, K-SVM and NB which 

vary between 95% and 97%. We can also easily see that both of MLP and LR reach 

the best value of correctly classified instances and the lower value of incorrectly 

classified instances compared to the other classification methods. It is noted that the 

DTs performance was the highest in the training phase, but it wasn’t in the testing 

phase; this proofs that DTs can learn accurately in the training phase, however it can 

be weak in generalization.  

In summary, both of MLP and LR algorithms provide a good performance 

(effectiveness and efficiency, accuracy, sensitivity and specificity) compared to the 

other algorithms. In this study, we achieve the highest accuracy (98%) in classifying 

breast tumors. 

4. Conclusion  

Machine learning techniques are revolutionizing the field of bio-medical and 

healthcare. One of the most important challenges of ML is to provide computationally 

efficient and accurate classifiers for healthcare field. In the last decade, many research 

works have been conducted in medical field for this reason. ML techniques have 

played a crucial role in improving classification and prediction accuracy. Although 

several algorithms have achieved a very good accuracy using WBCD, the development 

of new algorithms is still essential.  

In this paper, we employed MLP, L-SVM, K-SVM, DTs, RF, KNN, LR and NB on 

WBCD dataset. We compared their performance in terms of effectiveness and 

efficiency to find the highest classification accuracy. In this experimental study, we 

achieved the best  accuracy (98%) in classifying BC dataset using MLP and LR. In 

conclusion, MLP and LR have shown their efficiency in BC classification. 

Accuracy % 
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For the future work, we plan to apply deep reinforcement learning and genetic 

algorithms on new datasets to boost the breast cancer diagnosis and further improve 

prognostic accuracy. 
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