Recent Advances of Mechanical Engineering Applications in Medicine and Biology
DOI:
https://doi.org/10.26415/2572-004X-vol1iss3p62-75Keywords:
Biomechanics, Nanorobotics, Medicine, Biology, Biomedical engineeringAbstract
Background: Mechanics is an area of science dealing with the behavior of physical bodies (solids and fluids) undergoing action of forces, it comprised of statics, kinetics and kinematics. The advances and research in Applied Mechanics has wide application in almost fields of study including medicine and biology. In this paper, the relationship between mechanical engineering and medicine and biological sciences is investigated based on its application in these two sacred fields. Some emergent mechanical techniques applied in medical sciences and practices are presented.
Methods: Emerging applications of mechanical engineering in medical and biological sciences are presented and investigated including: biomechanics, nanomechanics and computational fluid dynamics (CFD).
Results: This review article presents some recent advances of mechanical engineering applications in medicine and biology. Specifically, this work focuses on three major subjects of interests:
- Biomechanics that is increasingly being recognized as an important application of mechanical fundamentals in biomedical and biological sciences and practices, biomechanics can play a crucial role in both injury prevention as well as performance enhancement of living systems.
- Novel techniques of nanomechanics including: Carbon nanotubes applications in therapy, DNA recognition, immunology and antiviral resistance. Nanorobotics that combines between nanotechnology, mechanics and new biomaterials to design and develop nanorobots based bacteria and biochips; these nanoscale robots can be involved in biomedical applications, particularly for the treatment of cancer, cerebral aneurysm treatment, kidney stones removal surgery, treatment of pathology, elimination of defected parts in the DNA structure, and some other treatments to save human lives.
- Computational fluid dynamics (CFD) tools that contribute on the understanding of blood flows, human organs dynamics and surgical options simulation.
Conclusion: Recent advances of mechanical applications in medicine and biology are carried out in this review, such as biomechanics, nanomechanics and computational fluid dynamics (CFD). As perspectives, mechanical scholars and engineers can involve these cited applications in their researches to solve many problems and issues that doctors and biologists cannot.
Downloads
References
2. http://www.ozeninc.com Internet.. Northern California: Ozen Engineering and ANSYS; cited 2017 Sep 05.. Available from: http://www.ozeninc.com/industry-solutions/medical-devices/
3. Belhadj. A., Boukhalfa. A., S.A. Belalia, Carbon nanotube structure vibration based on non-local elasticity, Journal of Modern Materials., Vol.3, No.1, pp.9-13.2017.
4. Belhadj. A., Boukhalfa. A., S.A. Belalia, Free vibration modelling of single-walled carbon nanotubes using the differential quadrature method, Mathematical Modelling of Engineering Problems, vol. 4 (1), pp. 33-37, 2017.https://doi.org/10.18280/mmep.040107
5. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 Lyon, France: International Agency for Research on Cancer; 2013.
6. Sanginario, A., Miccoli, B., & Demarchi, D. (2017). Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors, 7(1), 9.https://doi.org/10.3390/bios7010009
7. Elhissi, A., Ahmed, W., Hassan, I. U., Dhanak, V. R., D'Emanuele, A. (2011). Carbon nanotubes in cancer therapy and drug delivery. Journal of drug delivery, Volume 2012, Article ID 837327, 10 pages, doi:10.1155/2012/8373272012.
8. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Yang F, Jin C, Yang D, Jiang Y, Li J, Di Y, Hu J, Wang C, Ni Q, Fu D Eur J Cancer. 2011 Aug; 47(12):1873-82. https://doi.org/10.1016/j.ejca.2011.03.018
9. Yang L, Ng KY, Lillehei KO, Cell-mediated immunotherapy: a new approach to the treatment of malignant glioma.Cancer Control. 2003 Mar-Apr; 10(2):138-47. https://doi.org/10.1177/107327480301000205
10. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ. Targeted Single Wall Carbon Nanotube Mediated Pt(IV) Prodrug Delivery Using Folate as a Homing Device. Journal of the American Chemical Society. 2008;130(34):11467-11476. https://doi.org/10.1021/ja803036e
11. Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS, Scheinberg DA, McDevitt MR, Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomedicine. 2010 oct, vol 2010 (5) :783-802.doi.org/10.2147/IJN.S13300
12. Son, K. H., Hong, J. H., & Lee, J. W. (2016). Carbon nanotubes as cancer therapeutic carriers and mediators. International journal of nanomedicine, vol.2016(11) :5163—5185.
13. Fan, H., Zhang, I. Y., Chen, X., Zhang, L., Wang, H., da Fonseca, A. C. C., ... & Badie, B. (2012). Intracerebral CpG immunotherapy with carbon nanotubes abrogates growth of subcutaneous melanomas in mice. Clinical Cancer Research, 2012,18 (20):5628-5638.doi:10.1158/1078-0432.CCR-12-1911 https://doi.org/10.1158/1078-0432.CCR-12-1911
14. Fadel TR, Sharp FA, Vudattu N, et al. A carbon nanotube–polymer composite for T-cell therapy. Nat Nanotechnol. 2014;9(8):639–647. https://doi.org/10.1038/nnano.2014.154
15. Meng J, Yang M, Jia F, Kong H, Zhang W, Wang C, Xing J, Xie S, Xu H? Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity Nanotechnology. 2010 Apr 9; 21(14):145104. https://doi.org/10.1088/0957-4484/21/14/145104
16. Villa CH, Dao T, Ahearn I, Fehrenbacher N, Casey E, Rey DA, Korontsvit T, Zakhaleva V, Batt CA, Philips MR, Scheinberg D, Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano. 2011 Jul 26; 5(7):5300-11. https://doi.org/10.1021/nn200182x
17. Sacchetti C, Rapini N, Magrini A, Cirelli E, Bellucci S, Mattei M, Rosato N, Bottini N, Bottini M, In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes. Bioconjug Chem. 2013 Jun 19; 24(6):852-8. https://doi.org/10.1021/bc400070q
18. Congressional Research Service Report Life expectancy in the United States. Mar, 2005. Available at: http://www.cnie.org/nle/crsreports/05mar/RL32792.pdf. Accessed
19. Bartlett JG, Gilbert DN, Spellberg B, Seven ways to preserve the miracle of antibiotics, Clin Infect Dis. 2013 May; 56(10):1445-50.
https://doi.org/10.1093/cid/cit070
20. Dai, X., Guo, Q., Zhao, Y., Zhang, P., Zhang, T., Zhang, X., & Li, C. (2016). Functional Silver Nanoparticle as a Benign Antimicrobial Agent That Eradicates Antibiotic-Resistant Bacteria and Promotes Wound Healing. ACS applied materials & interfaces, 8(39), 25798-25807. https://doi.org/10.1021/acsami.6b09267
21. Rose. Y, Mattix.B, Rao.A, and Alexis. F, "Carbon nanotubes and infectious diseases," in Nanomedicine in Health and Disease, R. J. Hunter, Ed., pp. 249–267, Science Publishers, London, UK, 2011.
22. L. Jiang, T. Liu, H. He, Pham-Huy LA, Li L, Pham-Huy C, Xiao D, "Adsorption behavior of pazufloxacin mesilate on amino-functionalized carbon nanotubes," Journal of Nanoscience and Nanotechnology, 2012,12(9)7271-9. https://doi.org/10.1166/jnn.2012.6562
23. Wang, W. L., Wu, Q. Y., Wang, Z. M., Niu, L. X., Wang, C., Sun, M. C., & Hu, H. Y. (2015). Adsorption removal of antiviral drug oseltamivir and its metabolite oseltamivir carboxylate by carbon nanotubes: Effects of carbon nanotube properties and media. Journal of environmental management, 162 (octobre) :326-333.
https://doi.org/10.1016/j.jenvman.2015.07.043
24. Mehta, A. (2011). Genetic disorders and hereditary disorders. Retrieved June 10th.
25. Ibraheem, D., Elaissari, A., & Fessi, H. (2014). Gene therapy and DNA delivery systems. International journal of pharmaceutics, 459(1), 70-83. https://doi.org/10.1016/j.ijpharm.2013.11.041
26. Ramos-Perez, V., Cifuentes, A., Coronas, N., de Pablo, A., & Borrós, S. (2013). Modification of carbon nanotubes for gene delivery vectors. Nanomaterial Interfaces in Biology: Methods and Protocols, 261-268.
https://doi.org/10.1007/978-1-62703-462-3_20
27. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K J Am Chem Soc. 2005 Mar 30; 127(12):4388-96. https://doi.org/10.1021/ja0441561
28. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A, Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl. 2004 Oct 4; 43(39):5242-6. https://doi.org/10.1002/anie.200460437
29. Saadeh Y, Vyas D. Nanorobotic Applications in Medicine: Current Proposals and Designs. American journal of robotic surgery. 2014;1(1):4-11. doi:10.1166/ajrs.2014.1010. https://doi.org/10.1166/ajrs.2014.1010
30. Varadan VK, Chen LF, Xie J. Nanomedicine: Design and Applications of Magnetic Nanomaterials, Nanosensors and Nanosystems. Wiley; 2008. https://doi.org/10.1002/9780470715611
31. Ceyhan B, Alhorn P, Lang C, Schuler D, Niemeyer CM. Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids. Small. 2006;2(11) DOI:10.1002/smll.200600282 https://doi.org/10.1002/smll.200600282
32. Murphy D., Challacombe B., Nedas T., Elhage O., Althoefer K., Seneviratne L., Dasgupta P. Equipment and technology in robotics. Arch. Esp. Urol. 2007;60(4):349–354.
33. Ikeda S., Arai F., Fukuda T., Kim E.H., Negoro M., Irie K., Takahashi I. IEEE Int. Conf. Intell. Robot. Syst. Edmonton, Canada: 2005. Aug. In vitro patient-tailored anatomical model of cerebral artery for evaluating medical robots and systems for intravascular neurosurgery; pp. 1558–1563.
34. Fann J.I., Goar F.G.S., Komtebedde J., Oz M.C., Block P.C., Foster E., Butany J., Feldman T., Burdon T.A. Beating heart catheter-based edge-to-edge mitral valve procedure in a porcine model: efficacy and healing response. Circulation. 2004;110(8):988–993.
https://doi.org/10.1161/01.CIR.0000139855.12616.15
35. Nowlin W.C., Guthart G.S., Younge R.G., Cooper T.G., Gerbi C., Blumenkranz S.J., Hoornaert D.F. Grip strength with tactile feedback for robotic surgery. 6879880US. Apr. 2005.
36. Cuschieri A. Laparoscopic surgery: current status, issues and future developments. Surgeon. 2005;3(3):125–138.
https://doi.org/10.1016/S1479-666X(05)80032-0
37. Freitas R.A., Jr. Nanotechnology, Nanomedicine and Nanosurgery. Int. J. Surg. 2005;3(12):1–4.
https://doi.org/10.1016/j.ijsu.2005.10.007
38. Patel G.M., Patel G.C., Patel R.B., Patel J.K., Patel M. Nanorobot: a versatile tool in nanomedicine. J. Drug Target. 2006;14(2):63–67. https://doi.org/10.1080/10611860600612862
39. C. Darkin, Nanorobots With Human Embryo,
40. Jaiswal, A., H., Thakar, B., Atanukumar, T., Krunali, and D. B., Meshram, "Nanotechnology revolution: respirocytes and its application in life sciences" Innovare journal of life sciences, 1 (1): 8-13, 2013.
41. Freitas. RA. Jr, Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotechnol. 1998 Jul; 26(4):411-30. https://doi.org/10.3109/10731199809117682
42. Hassouna. HI,Blood stasis, thrombosis and fibrinolysis, Hematol Oncol Clin North Am. 2000 Apr; 14(2):xvii-xxii. https://doi.org/10.1016/S0889-8588(05)70134-9
43. Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S. Nanorobot for brain aneurysm. The International Journal of Robotics Research. 2009;28(4) :558-570. https://doi.org/10.1177/0278364908097586
44. Whitesides. GM,The 'right' size in nanobiotechnology.Whitesides GM.Nat Biotechnol. 2003 Oct; 21(10):1161-5.
https://doi.org/10.1038/nbt872
45. Uddin, M. J., Al Kalbani, K. S., Rahman, M. M., Alam, M. S., Al-Salti, N., & Eltayeb, I. A. (2016). Fundamentals of nanofluids: evolution, applications and new theory. Journal of Biomathematics and Systems Biology, 2(1) :1-32.
46. Wang S, Mamedova N, Kotov NA, Chen W, Studer J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Letters. 2002; 2(8):817–822. https://doi.org/10.1021/nl0255193
47. Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol Therapy, 2000;1(5):S239–S242. https://doi.org/10.1006/mthe.2000.0174
48. Edelstein RL, Tamanaha CR, Sheehan PE, Miller MM, Baselt DR, Whitman LJ, Colton RJ Biosens Bioelectron. 2000 Jan; 14(10-11):805-13. https://doi.org/10.1016/S0956-5663(99)00054-8
49. Nam JM, Thaxton CS, Mirkin CA, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003 Sep 26; 301(5641):1884-6. https://doi.org/10.1126/science.1088755
50. Mahtab R, Rogers JP, Murphy CJ. Protein-sized quantum dot luminescence can distinguish between "straight", "bent", and "kinked" oligonucleotides. J Am Chem Soc. 1995;117(35):9099–9100. https://doi.org/10.1021/ja00140a040
51. De la Isla A, Brostow W, Bujard B, Estevez M, Rodriguez JR, Vargas S, Castano VM. Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in tribology. Mat Resr Innovat. 2003;7(2):110–114. https://doi.org/10.1080/14328917.2003.11784770
52. Salata, O. V. (2004). Applications of nanoparticles in biology and medicine. Journal of nanobiotechnology, 2(1), 3. https://doi.org/10.1186/1477-3155-2-3
53. Ventrelli, L., Ricotti, L., Menciassi, A., Mazzolai, B., & Mattoli, V. (2013). Nanoscaffolds for guided cardiac repair: the new therapeutic challenge of regenerative medicine. Journal of Nanomaterials, 2013, Volume 2013, Article ID 108485, 16 pages.
https://doi.org/10.1155/2013/108485
54. Songvorawit, N., Tuitemwong, P., Tuchinda, K., & Tuitemwong, K. Fluorescent Dye-Doped Silica Nanoparticles with Polyclonal Antibodies for the Rapid Detection of Salmonella spp. Chiang Mai University Journal of Natural, 2013 ; 12(1):25-33.
https://doi.org/10.12982/CMUJNS.2013.0003
55. Costescu, A., Ciobanu, C. S., Iconaru, S. L., Ghita, R. V., Chifiriuc, C. M., Marutescu, L. G., & Predoi, D. (2013). Fabrication, characterization, and antimicrobial activity, evaluation of low silver concentrations in silver-doped hydroxyapatite nanoparticles. Journal of Nanomaterials, Volume 2013, Article ID 194854, 9 pages. https://doi.org/10.1155/2013/194854
56. Ferrua M, Singh R. Modeling the Fluid Dynamics in a Human Stomach to Gain Insight of Food Digestion. Journal of Food Science. 2010;75(7):R151-R162. https://doi.org/10.1111/j.1750-3841.2010.01748.x
57. De Leval. M. D et al., Use of computational fluid dynamics in the design of surgical procedures: Application to the study of competitive flows in cavopulmonary connections,The Journal of Thoracic and Cardiovascular Surgery, 1996, 111 (3), pp. 502-513.
https://doi.org/10.1016/S0022-5223(96)70302-1
58. Rispoli VC, Nielsen JF, Nayak KS, Carvalho JLA. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. BioMedical Engineering OnLine. 2015;14(110) :1-23.DOI 10.1186/s12938-015-0104-7
https://doi.org/10.1186/s12938-015-0104-7
59. Doost SN, Ghista D, Su B, Zhong L, Morsi YS. Heart blood flow simulation: a perspective review. BioMedical Engineering OnLine. 2016;15(1):101. doi:10.1186/s12938-016-0224-8. https://doi.org/10.1186/s12938-016-0224-8
60. R. F. Rickard, J. Wilson and D. A. Hudson, Characterization of a rodent model for the study of arterial microanastomoses with size discrepancy (small-to-large),Laboratory Animals, vol. 43, no. 4, pp. 350-356, 2009. https://doi.org/10.1258/la.2009.0080097