An Analytical Method to Calculate Phantom Scatter Factor for Photon Beam Accelerators

Authors

  • Nahid Chegen Ph.D. of Medical Physics, Assistant Professor, Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences: Ahvaz, Iran

Keywords:

Radiotherapy, Total scatter factor, Phantom scatter factor

Abstract

Introduction: One of the important input factors in the commissioning of the radiotherapy treatment planning systems is the phantom scatter factor (Sp) which requires the same collimator opening for all radiation fields. In this study, we have proposed an analytical method to overcome this issue. 

Methods: The measurements were performed using Siemens Primus Plus with photon energy 6 MV for field sizes from 5×5cm2 to 40×40cm2. Phantom scatter factor was measured through the division of total scatter output factors (Scp), and collimator scatter factor (Sc). 

Results: The mean percent difference between the measured and calculated Sp was 1.00% and -3.11% for 5×5, 40×40 cm2 field size respectively. 

Conclusion: This method is applicable especially for small fields used in IMRT which, measuring collimator scatter factor is not reliable due to the lateral electron disequilibrium.

References

Miyashita H, Hatanaka S, Fujita Y, Hashimoto S, Myojyoyama A, Saitoh H. Quantitative analysis of in-air

output ratio. J Radiat Res. 2013; 54(3): 553-60. doi: 10.1093/jrr/rrs118. PMID: 23292148, PMCID:

PMC3650743.

Khan FM, Gibbons JP. Khan's the physics of radiation therapy: Lippincott Williams & Wilkins; 2014.

Zhu TC, Ahnesjö A, Lam KL, Li XA, Ma CM, Palta JR, et al. Report of AAPM Therapy Physics Committee

Task Group 74: in-air output ratio, Sc, for megavoltage photon beams. Med Phys. 2009; 36(11): 5261-91.

doi: 10.1118/1.3227367. PMID: 19994536.

Khan FM. The physics of radiation therapy. 4 ed. med Phy; 2012. 148-52.

Iftikhar A. Measurements of output factors using different ionization chambers and build up caps. Iranian

Journal of Radiation Research. 2012; 10(2): 95-8.

McKerracher C, Thwaites DI. Phantom scatter factors for small MV photon fields. Radiotherapy and

Oncology. 2008; 86(2): 272-5. doi: 10.1016/j.radonc.2007.10.040. PMID: 18061694.

Van Gasteren JJ, Heukelom S, Van Kleffens HJ, Van der Laarse R, Venselaar JL, Westermann CF. The

determination of phantom and collimator scatter components of the output of megavoltage photon beams:

measurement of the collimator scatter part with a beam-coaxial narrow cylindrical phantom. Radiother Oncol.

; 20(4): 250-7. doi: 10.1016/0167-8140(91)90124-Y. PMID: 1906190.

Hayakawa T, Yamada T, Sakai H, Kasahara T, Inoue T, Miyakawa M. [Estimation of the phantom scatter

factor (Sp) of rectangular fields]. Nihon Hoshasen Gijutsu Gakkai zasshi. 2011; 68(1): 15-29. doi:

6009/jjrt.2012-JSRT-68.1.15. PMID: 22277812.

Oh YK, Choi TJ, Kim JH, Kim OB. Determination of Phantom Scatter Factors for Small Photon Fields.

Korean J Med Phys. 2009; 20(2): 106-11.

Richmond N, Allen V, Daniel J, Dacey R, Walker C. A comparison of phantom scatter from flattened and

flattening filter free high-energy photon beams. Med Dosim. 2015; 40(1): 58-63. doi:

1016/j.meddos.2014.10.001. PMID: 25454113.

Tailor RC, Followill DS, Hernandez N, Zhu TS. Quality-Assurance Check of Collimator and Phantom- Scatter Factors. Medical Physics; 2003.

Khan FM, Sewchand W, Lee J, Williamson JF. Revision of tissue‐maximum ratio and scatter‐maximum

ratio concepts for cobalt 60 and higher energy x‐ray beams. Med Phys. 1980; 7(3): 230-7. doi:

1118/1.594648. PMID: 6771511.

Venselaar JL, Heukelom S, Jager HN, Mijnheer BJ, van Gasteren JJ, van Kleffens HJ, et al. Is there a need

for a revised table of equivalent square fields for the determination of phantom scatter correction factors?

Phys Med Biol. 1997; 42(12): 2369-81. doi: 10.1088/0031-9155/42/12/005. PMID: 9434294.

Venselaar JL, Van Gasteren JJ, Heukelom S, Jager HN, Mijnheer BJ, Van der Laarse R, et al. A consistent

formalism for the application of phantom and collimator scatter factors. Phys Med Biol. 1999; 44(2): 365- 81. doi: 10.1088/0031-9155/44/2/006. PMID: 10070788.

Tahmasebi Birgani MJ, Behrouz MA, Aliakbari S, Hosseini SM, Khezerloo D. Determination of square

equivalent field for rectangular field in electron therapy. J Med Phys. 2013; 38(2): 82-6. doi: 10.4103/0971- 6203.111317. PMID: 23776311, PMCID: PMC3683305.

Tahmasebi Birgani MJ, Chegeni N, Zabihzadeh M, Hamzian N. An analytical method to calculate equivalent

fields to irregular symmetric and asymmetric photon fields. Med Dosim. 2014; 39(1): 54-9. doi:

1016/j.meddos.2013.09.007. PMID: 24485053.

Bjärngard BE, Shackford H. Attenuation in high‐energy x‐ray beams. Medical Physics. 1994; 21(7):

-73. doi: 10.1118/1.597349. PMID: 7968838.

Tahmasebi Birgani M, Behrooz MA, Shahbazian H, Shams A. Determination of the attenuation coefficient

for megavoltage photons in the water phantom. Iranian journal of radiation research (IJRR). 2012; 9(4): 251- 5.

Karabrahimi V, Blais N. SU-FF-T-366: Prediction of Collimator Scatter Factor and Phantom Scatter Factor

for Kilovoltage X-Ray Radiation Fields. Medical Physics. 2006; 33(6). doi: 10.1118/1.2241286.

Chung H, Prado KL, Yi BY. An analytical formalism to calculate phantom scatter factors for flattening filter

free (FFF) mode photon beams. Phys Med Biol. 2014; 59(4): 951-60. doi: 10.1088/0031-9155/59/4/951.

PMID: 24503449.

Published

2022-01-18