Assessment of two hemispherical and hemispherical-conical miniature sources used in electronic brachytherapy using Monte Carlo Simulation

Authors

  • Barat Barati Ph.D. Candidate, Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Keywords:

Mont Carlo simulation; Electronic Branchy therapy; Energy Spectrum; Dose calculation; Mesh tally

Abstract

Introduction: Since the heart of the electronic brachytherapy system is a tube of a miniature x-ray and due to the increasing use of electronic brachytherapy, there is an urgent need for acquiring knowledge about the X-ray spectrum produced, and distribution of x-ray dose. This study aimed to assess the optimal target thickness (TT), the X-ray source spectrum, and the absorbed dose of two miniature sources of hemispherical and hemispherical-conical used in electronic brachytherapy systems, through a Monte Carlo simulation. 

Methods: Considering the advantages of MCNPX Code (2.6.0), two input files corresponding to the characteristics of the investigated miniature sources were prepared for this code and then were used for simulation. The optimal thickness (OT) of gold and tungsten targets was determined for the energy levels of 40, 45, and 50 kilo-electron-volts.

Results: In this study, the values of the size of the optimal thickness of 0.92, 1.01 and 1.06 μ for gold target and values of 0.99, 1.08 and 1.34 μ for tungsten target were obtained for energies 40, 45 and 50 keV that using these values, the optimum thickness of 0.92, X-ray spectrum within and outside targets, axial and radial doses for the used energy were calculated for two miniature sources.

Conclusion: It was found that the energy of incident electron, target shape, cross-sectional area of the produced bremsstrahlung, atomic number of materials constituting of the target and output window are the factors with the greatest impacts on the produced X-ray spectrum and the absorbed dose.

References

Herrera R. MCNP5 Monte Carlo based dosimetry for the nucletron iridium-192 high dose-rate

brachytherapy source with tissue heterogeneity corrections. Florida Atlantic University. 2012.

Liu DMC. Characterization of novel electronic brachytherapy system. McGill University. 2007.

Dueitt B. Comparisons of External Beam Radiation Therapy, Brachytherapy, and Combination Therapy in

the Treatment of Prostate Cancer.

Choe KS, Liauw SL. Radiotherapeutic strategies in the management of low-risk prostate cancer. Scientific

World Journal. 2010; 10: 1854-69. doi: 10.1100/tsw.2010.179. PMID: 20852828.

Gierga DP, Shefer RE. Characterization of a soft x-ray source for intravascular radiation therapy.

International Journal of Radiation Oncology* Biology* Physics. 2001; 49(3): 847-56. doi: 10.1016/S0360- 3016(00)01510-8.

Kim H, Heoa S, Haa J, Choa S. An Optimization of Super-Miniature X-ray Target. Transactions of the

Korean Nuclear Society Spring Meeting, Taebaek, Korea. 2011.

Pelowitz DB. MCNPXTM user’s manual. Los Alamos National Laboratory, Los Alamos. 2005.

Dinsmore M. Miniature x-ray source with flexible probe. Google Patents. 2001.

Ihsan A, Heo SH, Kim HJ, Kang CM, Cho SO. An optimal design of X-ray target for uniform X-ray

emission from an electronic brachytherapy system. Nuclear Instruments and Methods in Physics Research

Section B: Beam Interactions with Materials and Atoms. 2011; 269(10): 1053-7. doi:

1016/j.nimb.2011.03.001.

Rivard MJ, Davis SD, DeWerd LA, Rusch TW, Axelrod S. Calculated and measured brachytherapy

dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source. Med

Phys. 2006; 33(11): 4020-32. doi: 10.1118/1.2357021. PMID: 17153382.

Eaton D. Electronic brachytherapy--current status and future directions. Br J Radiol. 2015; 88(1049):

doi: 10.1259/bjr.20150002. PMID: 25748070, PMCID: PMC4628482.

Adolfsson E, White S, Landry G, Lund E, Gustafsson H, Verhaegen F, et al. Measurement of absorbed

dose to water around an electronic brachytherapy source. Comparison of two dosimetry systems: lithium

formate EPR dosimeters and radiochromic EBT2 film. Phys Med Biol. 2015; 60(9): 3869-82. doi:

1088/0031-9155/60/9/3869. PMID: 25906141.

Hiatt JR, Davis SD, Rivard MJ. A revised dosimetric characterization of the model S700 electronic

brachytherapy source containing an anode-centering plastic insert and other components not included in the

model. Medical physics. 2015; 42(6): 2764-76. doi: 10.1118/1.4919280. PMID: 26127029.

Lam SC, Xu Y, Ingram G, Chong L. Dosimetric characteristics of INTRABEAM® flat and surface

applicators. Translational Cancer Research. 2014; 3(1): 106-11.

Rivard MJ, Rusch TW, Axelrod S, editors. Radiological dependence of electronic brachytherapy simulation

on input parameters. Medical Physics; 2006: AMER ASSOC PHYSICISTS MEDICINE AMER INST

PHYSICS STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA.

Rusch T, Axelrod S, Smith P. SU‐FF‐T‐46: Performance of Xoft Flexi Shield TM Flexible X‐Ray

Shielding in Laboratory Tests and in a Goat Mammary Model. Medical Physics. 2005; 32(6): 1959. doi:

1118/1.1997717.

White SA, Landry G, Fonseca GP, Holt R, Rusch T, Beaulieu L, et al. Comparison of TG-43 and TG-186

in breast irradiation using a low energy electronic brachytherapy source. Med Phys. 2014; 41(6): 061701.

doi: 10.1118/1.4873319. PMID: 24877796.

Jashni HK, Safigholi H, Meigooni AS. Influences of spherical phantom heterogeneities on dosimetric

charactristics of miniature electronic brachytherapy X-ray sources: Monte Carlo study. Applied Radiation

and Isotopes. 2014; 95C: 108-13. doi: 10.1016/j.apradiso.2014.10.014. PMID: 25464186.

Safigholi H, Faghihi R, Jashni SK, Meigooni AS. Characteristics of miniature electronic brachytherapy xray sources based on TG-43U1 formalism using Monte Carlo simulation techniquesa). Med Phys. 2012;

(4): 1971-9. doi: 10.1118/1.3693046. PMID: 22482618.

Muralidhar K, Rout BK, Mallikarjuna A, Poornima A, Murthy PN. Commissioning and quality assurances

of the Intrabeam Intra-Operative radiotherapy unit. International Journal of Cancer Therapy and Oncology.

; 2(4). doi: 10.14319/ijcto.0204.15.

Unsworth MH, Greening JR. Theoretical continuous and L-characteristic X-ray spectra for tungsten target

tubes operated at 10 to 50kV. Phys Med Biol. 1970; 15(4): 621-30. doi: 10.1088/0031-9155/15/4/001.

PMID: 5488137.

Hernandez AM, Boone JM. Unfiltered Monte Carlo-based tungsten anode spectral model from 20 to 640

kV. SPIE Medical Imaging; 2014: International Society for Optics and Photonics. 2014; 9033. doi:

1117/12.2042295.

Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang JM, et al. A review of the use and potential of the

GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med phys. 2014;

(6): 064301. doi: 10.1118/1.4871617. PMID: 24877844.

Van der Walt de Kock M. Variance reduction techniques for MCNP applied to PBMR/by Marisa van der

Walt de Kock. North-West University. 2009.

Redd RA. Radiation dosimetry and medical physics calculations using MCNP 5. Texas A&M University.

Braga MR, Penna R, Vasconcelos DC, Pereira C, Guerra BT, Silva CJ. Nuclear densimeter of soil

simulated in MCNP-4C code. International Nuclear Atlantic Conference.Rio de Janeiro, RJ, Brazil. 2009.

McKinney G, Durkee J, Hendricks J, James M, Pelowitz D, Waters L, et al. Review of Monte Carlo all- particle transport codes and overview of recent MCNPX features. PoS. 2006; 88. 28) Larsson E. Realistic tissue dosimetry models using Monte Carlo simulations. Applications for radionuclide

therapies: Lund University. 2011; 75.

Mcconn RJ, Gesh CJ, Pagh RT, Rucker RA, Williams R. Compendium of material composition data for

radiation transport modeling. PNNL-15870 Rev. 2011; 1(4). doi: 10.2172/1023125.

Larsson E. Dosimetrical studies on a tissue level using the MCNP4c2 Monte Carlo Simulations. 2004.

Nasseri MM. Determination of Tungsten Target Parameters for Transmission X-ray Tube: A Simulation

Study Using Geant4. Nuclear Engineering and Technology. 2016; 48(3): 795-8. doi:

1016/j.net.2016.01.006.

Seibert JA. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray

production. J Nucl Med Technol. 2004; 32(3): 139-47. PMID: 15347692.

Mark S, Mordechai S. Applications of Monte Carlo Method in Science and Engineering.

Ganguly A. Essential Physics For Radiodology And Imaging. Academic Publishers.

Hernandez AM, Boone JM. Tungsten anode spectral model using interpolating cubic splines: Unfiltered xray spectra from 20 kV to 640 kV. Med phys. 2014; 41(4): 042101. doi: 10.1118/1.4866216. PMID:

, PMCID: PMC3985923.

Wang R, Pei L, Huang Z. Study on Calculation of Detector Flux with Monte Carlo Methods. Journal of

Nuclear Science and Technology. 2014; 37(sup1): 436-40. doi: 10.1080/00223131.2000.10874923.

Ihsan A, Heo SH, Cho SO. A microfocus X-ray tube based on a microstructured X-ray target. Nuclear

Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

; 267(21): 3566-73. doi: 10.1016/j.nimb.2009.08.012.

Davis SD. Air-kerma strength determination of a miniature x-ray source for brachytherapy applications

Pike TL. A dosimetric characterization of an electronic brachytherapy source in terms of absorbed dose to

water. The university of wisconsin-madison. 2012.

Heo SH, Ihsan A, Cho SO. Transmission-type microfocus x-ray tube using carbon nanotube field emitters.

doi: 10.1063/1.2735549.

Williams T. Axial Energy Distribution in Disc-Shaped Tantalum and Aluminium Bremsstrahlung

Conversion Targets. Acta Physica Polonica-Series A General Physics. 2009; 115(6): 1180. doi:

12693/APhysPolA.115.1180.

Published

2022-01-18