Caspase 3 role and immunohistochemical expression in assessment of apoptosis as a feature of H1N1 vaccine-caused Drug-Induced Liver Injury (DILI)
Keywords:
H1N1 vaccine, DILI, Caspase3, Apoptosis, LiverAbstract
Background: Drug-Induced Liver Injury (DILI) changes, occur post exposure to natural or chemical compounds including apoptosis.
Aim: To assess the H1N1 vaccine-caused DILI by histochemical and immunohistochemical methods.
Methods: This 2014’s experimental study was conducted on 70 albino rats. They were given ArepanrixTM H1N1 vaccine and were divided into 7 groups; 10 mice each, as control (non-vaccinated), vac2 and vac4 injected with 1st and 2nd doses of vaccine (suspension only) and euthanized after 3 weeks each, vac5 euthanized 6 weeks after 2nd dose, mix2 and mix4 injected with 1st and 2nd doses of vaccine (mixture of suspension and adjuvant) and euthanized after 3 weeks each, mix5 and euthanized 6 weeks after 2nd dose. Histopathological evaluation and histochemical assessment of metabolic protein, glycogen and collagen changes using PAS, bromophenol blue, Mallory’s trichrome and immunohistochemistry for caspase 3 on liver tissue paraffin sections were done. Image analysis system Leica QIIN 500 was used. Data were analyzed by SPSS software, using descriptive statistics and ANOVA.
Results: Histopathological changes ranging from subtle up to necrosis were noticed, mainly in mix groups. Metabolic protein and glycogen changes were the maximum in mix5 group (p<0.01). Collagen deposition in sinusoids was higher in mix groups, and maximally in vac5 and mix5. Apoptotic hepatocytes expressing diffuse strong nuclear and cytoplasmic caspase 3 were the highest in mix5.
Conclusion: H1N1 vaccine can cause DILI by either direct toxic or idiosyncratic metabolic type reactions rather than immunologic hypersensitivity type. It ranges from subtle changes up to necrosis. Caspase 3 is pivotal in liver damage etiology, apoptosis induction and processing. Follow up for at least 2 months after the 2nd dose of H1N1 vaccine is recommended to rule out H1N1-induced DILI.
References
Kurt Fisher, Raj Vuppalanchi, Romil Saxena. Drug-Induced Liver Injury. Archives of Pathology &
Laboratory Medicine: July 2015; 139 (7): 876-87. doi: 10.5858/arpa.2014-0214-RA
Aithal GP, Watkins PB, Andradr RJ, et al. Case definition and phenotype standardisation in drug-induced
liver injury. Nature, 2011; 89(6) 806-15.
Braunwald E, Fauci AS, Kasper DL, et al. Harrison’s Principles of Internal Medicine 15th Edition.
McGraw Hill; 2003.
Kaplowitz. Drug-induced liver injury. Clin Infect Dis, 2004; 38 (Suppl 2): S44-S48
Bjornsson E, Kalaitzakis E, Olsson R. The impact of eosinophilia and hepatic necrosis on prognosis in
patients with drug-induced liver injury. Aliment Pharmacol Ther. 2007; 25 (12): 1411–1421, doi:
1111/j.1365-2036.2007.03330.x, PMid: 17539980
Ibanez L, Perez E, Vidal X, Laporte JR; Grup d'Estudi Multicenteric d'Hepatotoxicitat Aguda de Barcelona.
Prospective surveillance of acute serious liver disease unrelated to infectious, obstructive, or metabolic
diseases: epidemiological and clinical features, and exposure to drugs. J Hepatol. 2002; 37 (5): 592–600,
doi: 10.1016/S0168-8278(02)00231-3
Vuppalanchi R, Gotur R, Reddy KR, et al. Relationship between characteristics of medications and druginduced liver disease phenotype and outcome [published online ahead of print December 20 2013]. Clin
Gastroenterol Hepatol. doi: 10.1016/j.cgh.2013.12.016.
Popper H, Rubin E, Cardiol D, Schaffner F, Paronetto F. Drug-induced liver disease: a penalty for progress.
Arch. Intern. Med. 1965; 115; 128–36, doi: 10.1001/archinte.1965.03860140008003, PMid: 14331990
David E Kleiner. The histopathological evaluation of drug-induced liver injury. Histopathology, 2017; 70
(1): 81–93. doi: 10.1111/his.13082.
Mathieu Vinken. Adverse outcome pathways and drug-induced liver injury testing. Chem Res Toxicol.
Oct 7. doi: 10.1021/acs.chemrestox.5b00208
McKenzie R, Fried MW, Sallie R et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an
investigational nucleoside analogue for chronic hepatitis B. N. Engl. J. Med. 1995; 333; 1099–105. doi:
1056/NEJM199510263331702, PMid: 7565947
Kleiner DE, Gaffey MJ, Sallie R et al. Histopathologic changes associated with fialuridine hepatotoxicity.
Mod. Pathol.1997; 10; 192–199. PMid: 9071726
Koek GH, Liedorp PR, Bast A. The role of oxidative stress in non-alcoholic steatohepatitis. Clin Chim
Acta. 2011; 412: 1297–305. doi: 10.1016/j.cca.2011.04.013, PMid: 21514287
Vaishali Patel and Arun J. Sanyal. Drug-Induced Steatohepatitis . Clin Liver Dis. 2013 Nov; 17(4): 533–7.
doi: 10.1016/j.cld.2013.07.012.
Maria Eugenia Guicciardi, Harmeet Malhi, Justin L. Mott, and Gregory J. Gores. Apoptosis and Necrosis
in the Liver. Compr Physiol. 2013 Apr; 3(2), doi: 10.1002/cphy.c120020.
David R. McIlwain, Thorsten Berger and Tak W. Mak. Caspase Functions in Cell Death and Disease.
Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013 Apr 1; 5(4): a008656.
doi: 10.1101/cshperspect.a008656.
Min Yang, Daniel J. Antoine, James L. Weemhoff, Rosalind E. Jenkins, Anwar Farhood, B. Kevin Park,
and Hartmut Jaeschke. Biomarkers Distinguish Apoptotic And Necrotic Cell Death During Hepatic
Ischemia-Reperfusion Injury In Mice. Liver Transpl. 2014; 20 (11): 1372–82. doi: 10.1002/lt.23958
Gores GJ, Herman B, Lemasters JJ. Plasma membrane bleb formation and rupture: A common feature of
hepatocellular injury. Hepatology. 1990; 11: 690–8. doi: 10.1002/hep.1840110425, PMid: 2184116
Silva MT. Secondary necrosis: The natural outcome of the complete apoptotic program. FEBS Lett. 2010;
: 4491–9. doi: 10.1016/j.febslet.2010.10.046, PMid: 20974143
Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med. 2009; 361: 1570–83, doi:
1056/NEJMra0901217, PMid: 19828534, PMCid: PMC3760419
Martin SJ, Henry CM, Cullen SP. A perspective on mammalian caspases as positive and negative
regulators of inflammation. Mol Cell. 2012; 46: 387–97, doi: 10.1016/j.molcel.2012.04.026, PMid:
Michitaka Ozaki, Sanae Haga, and Takeaki Ozawa . In Vivo Monitoring of Liver Damage Using Caspase- 3 Probe . Theranostics. 2012; 2 (2): 207–14. doi: 10.7150/thno.3806, PMid: 22375159, PMCid:
PMC3287426
Olga Sobolev, Elisa Binda, Sean O'Farrell, Anna Lorenc, Joel Pradines, Yongqing Huang, et al. Adjuvanted
influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical
adverse events. Nature Immunology; 2016 (17): 204–13, doi: 10.1038/ni.3328
Asa, B.; Cao, Y. and Garry, F. Antibodies to squalene in Gulf War Syndrome. Exp. Mol. Pathol., 2000; 68
(1): 55–64. doi: 10.1006/exmp.1999.2295, PMid: 10640454
Fatma Ahmed Eid , Aly Fahmy Mohamed , Alya Mohammed Aly and Nadia Fathy Ibrahim. Effects of
swine flu (H1N1) vaccine on albino rats. Journal of Bioscience and Applied Research, 2015; 1 (3): 113-26
Maha G. Soliman, Fatma A. Eid and AlyaM. Aly. Squalene Immunogenicity Determination As An
Adjuvant. Int. J. Adv. Res. 2016; 4(10), 49-59
Emily Loison, Béatrice Poirier-Beaudouin, Valérie Seffer, Audrey Paoletti, Vered Abitbol, Eric Tartour,
Odile Launay, and Marie-Lise Gougeon. Suppression by Thimerosal of Ex-Vivo CD4+ T Cell Response to
Influenza Vaccine and Induction of Apoptosis in Primary Memory T Cells. PLoS One. 2014; 9 (4): e92705.
doi: 10.1371/journal.pone.0092705
Ho, M. Fast-tracked swine flu vaccine under fire. Science in Society, 2009b; 43: 4-6.
Viera, Scheibner . Adverse effects of adjuvants in vaccines. Whale, 2001; 8(2): 1-11.
Roan, Shari. Swine flu debacle of 1976 is recalled. Los Angeles Times (latimes); 2009.
National Institute of Allergy and Infectious Diseases (NIAID) (2009): Thimerosal in Vaccines.
Sanfeliu, C.; Sebastia, J. and Ki, S. U. Methylmercury neurotoxicity in cultures of human neurons,
astrocytes, neuroblastoma cells. Neurotoxicology, 2001; 22: 317-27. doi: 10.1016/S0161-813X(01)00015-8
Makani S, Gollapudi S, Yel L, Chiplunkar S, Gupta S. Biochemical and molecular basis of thimerosalinduced apoptosis in T cells: a major role of mitochondrial pathway. Genes and immunity, 2002; 3: 270–8.
doi: 10.1038/sj.gene.6363854, PMid: 12140745
Kroemer G, Reed JC. Mitochondrial control of cell death. Nature medicine, 2000; 6: 513–9, doi:
1038/74994, PMid: 10802706
Kleiner DE, Chalasani NP, Lee WM, et al. Hepatic histological findings in suspected drug-induced liver
injury: systematic evaluation and clinical associations. Hepatology. 2014; 59 (2): 661–70, doi:
1002/hep.26709, PMid: 24037963, PMCid: PMC3946736
Andrade RJ, Lucena MI, Kaplowitz N, et al. Outcome of acute idiosyncratic drug-induced liver injury:
long-term follow-up in a hepatotoxicity registry. Hepatology. 2006;44(6):1581–8, doi: 10.1002/hep.21424,
PMid: 17133470
Bjornsson E, Kalaitzakis E, Olsson R. The impact of eosinophilia and hepatic necrosis on prognosis in
patients with drug-induced liver injury. Aliment Pharmacol Ther. 2007; 25 (12): 1411–21, doi:
1111/j.1365-2036.2007.03330.x, PMid: 17539980
Paget, G. E. and Barnes, J. M. Interspecies dosage conversion scheme in evaluation of results and
quantitative application in different species. Evaluation of Drug Activities, 1964: Pharmacometric, 1: 160- 162.
Jin Z, El-Deiry WS . Overview of cell death signaling pathways. Cancer Biol Ther (2005); 4:139–163, doi:
4161/cbt.4.2.1508, PMid: 15725726
Aude Bressenot, Sophie Marchal, Lina Bezdetnaya, Julie Garrier, François Guillemin, and François Plénat.
Assessment of Apoptosis by Immunohistochemistry to Active Caspase-3, Active Caspase-7, or Cleaved
PARP in Monolayer Cells and Spheroid and Subcutaneous Xenografts of Human Carcinoma. J Histochem
Cytochem. 2009 Apr; 57(4): 289–300. doi: 10.1369/jhc.2008.952044
Aydogan, M. Haligur, O. Ozmen. The expression of caspase-3, caspase-7, caspase-9 and cytokeratin
AE1/AE3 in goats with enzootic nasal adenocarcinoma: an immunohistochemical study. Veterinarni
Medicina, 58, 2013 (8): 417–421.
Kohli V, Selzner M, Madden JF, Bentley RC, Clavien PA. Endothelial cell and hepatocyte deaths occur by
apoptosis after ischemia-reperfusion injuryin the rat liver. Transplantation. 1999; 67: 1099–105. doi:
1097/00007890-199904270-00003, PMid: 10232558
Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Platelets induce sinusoidal endothelial cell
apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology. 2000; 118: 183–91. doi:
1016/S0016-5085(00)70427-6
Ikner A, Ashkenazi A. TWEAK induces apoptosis through a death-signaling complex comprising receptorinteracting protein 1 (RIP1), Fas-associated death domain (FADD), and caspase-8. J Biol Chem. 2011; 286:
–54. doi: 0.1074/jbc.M110.203745, PMid: 21525013, PMCid: PMC3122213
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: An
ordered cellular explosion. Nat Rev Mol Cell Biol. 2010; 11: 700–14. doi: 10.1038/nrm2970, PMid:
Galluzzi L, Kroemer G. Necroptosis: A specialized pathway of programmed necrosis. Cell. 2008; 135:
-3. doi: 10.1016/j.cell.2008.12.004, PMid: 19109884
Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: A tale of two deaths? Hepatology.
; 43: S31–S44. doi: 10.1002/hep.21062, PMid: 16447272
Faouzi S, Burckhardt BE, Hanson JC, Campe CB, Schrum LW, Rippe RA, Maher JJ. Anti-Fas induces
hepatic chemokines and promotes inflammation by an NF-kappa B-independent, caspase-3-dependent
pathway. J Biol Chem. 2001; 276: 49077–82. doi: 10.1074/jbc.M109791200, PMid: 11602613
Yoon JH, Gores GJ. Death receptor-mediated apoptosis and the liver. llll J Hepatol. 2002; 37: 400–10. doi:
1016/S0168-8278(02)00209-X
Torbenson M, Chen YY, Brunt E et al. Glycogenic hepatopathy: an underrecognized hepatic complication
of diabetes mellitus. Am. J. Surg. Pathol. 2006; 30; 508–513. doi: 10.1097/00000478-200604000-00012,
PMid: 16625098
Benedetti A, Jezequel AM, Orlandi F. Preferential distribution of apoptotic bodies in acinar zone 3 of
normal human and rat liver. J Hepatol. 1988; 7: 319–24. doi: 10.1016/S0168-8278(88)80004-7
Benedetti A, Jezequel AM, Orlandi F. A quantitative evaluation of apoptotic bodies in rat liver. Liver.
; 8: 172–7. doi: 10.1111/j.1600-0676.1988.tb00987.x, PMid: 3393066
Zajicek G, Oren R, Weinreb M., Jr The streaming liver. Liver. 1985; 5: 293–300. doi: 10.1111/j.1600- 0676.1985.tb00252.x, PMid: 4088003
Shimbo K, Hsu GW, Nguyen H, Mahrus S, Trinidad JC, Burlingame AL, Wells JA. Quantitative profiling
of caspase-cleaved substrates reveals different drug-induced and cell-type patterns in apoptosis. Proc Natl
Acad Sci U S A. 2012; 109: 12432–7. doi: 10.1073/pnas.1208616109, PMid: 22802652, PMCid:
PMC3412033
Published
Issue
Section
License
Copyright (c) 2020 KNOWLEDGE KINGDOM PUBLISHING
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.