Kinetic parameters and nitrate, nitrite changes in bioremediation of Toxic Pentaerythritol Tetranitrate (PETN) contaminated soil

Authors

  • Mohammad Mohammad Ph.D. of Environmental Health, Professor, Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran, and Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

Keywords:

PETN, Soil, Bioremediation, Nitrate, Nitrite, Kinetic parameters

Abstract

Background: Cleanup of areas contaminated by explosives is a public health concern. Some explosives can be carcinogenic in humans. Pentaerythritol Tetranitrate (PETN), a powerful explosive with very low water solubility, can be easily transported to ground waters. 

Objective: This study was conducted to determine the removal efficiencies of PETN from soil by bioremediation, and obtain kinetic parameters of biological process.

Methods: This experimental study was conducted at the Environmental Health Engineering Lab (Isfahan University of Medical Sciences, Isfahan, Iran) in 2015-2016. In the present work, bioremediation of the explosive-polluted soils by PETN in anaerobic-aerobic landfarming method was performed. The influence of seeding and biosurfactant addition on bioremediation was also evaluated. The data were analyzed using Microsoft Excel software.

Results: The results show that, as the initial concentration of PETN increased, the lag phase was increased and the specific growth rate was increased up to 0.1/day in concentration of 50 mg/kg, and then it was decreased to 0.04/day. Subsequent decreases in specific growth rate can cause substrate inhibition. Seeding causes decrease in lag phase significantly. Biosurfactant addition had little to no impact on the length of lag phase, but biosurfactant plus seeding can increase the growth rate to 0.2/day, however, inhibitory effect of the initial concentration was started in very high concentration of PETN (150 mg/kg). 

Conclusion: Biosurfactant addition and seeding together have an impressive effect on biodegradation of PETN, furthermore seeding can enhance active microbial consortium and biosurfactant can improve the poor aqueous solubility of PETN, therefore making the substrate more accessible.

References

Lewis TA, Newcombe DA, Crawford RL. Bioremediation of soils contaminated with explosives. J Environ

Manage. 2004; 70(4): 291-307. PMID: 15016438.

Ayoub K, van Hullebusch ED, Cassir M, Bermond A. Application of advanced oxidation processes for

TNT removal: a review. J Hazard Mater. 2010; 178(1): 10-28. doi: 10.1016/j.jhazmat.2010.02.042. PMID:

Gandia‐Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, et al. Detoxification of the

explosive 2, 4, 6 ‐ trinitrotoluene in Arabidopsis: discovery of bifunctional O ‐ and C ‐

glucosyltransferases. The Plant J. 2008; 56(6): 963-74. doi: 10.1111/j.1365-313X.2008.03653.x. PMID:

Mercimek HA, Dincer S, Guzeldag G, Ozsavli A, Matyar F, Arkut A, et al. Degradation of 2,4,6-

trinitrotoluene by P. aeruginosa and characterization of some metabolites. Braz J Microbiol. 2015; 46(1):

-11. doi: 10.1590/S1517-838246120140026. PMID: 26221094. PMCID: PMC4512054.

Barreto-Rodrigues M, Silva FT, Paiva TC. Characterization of wastewater from the Brazilian TNT

industry. J Hazard Mater. 2009; 164(1): 385-8. doi: 10.1016/j.jhazmat.2008.07.152. PMID: 18818021.

Fu D, Zhang Y, Lv F, Chu PK, Shang J. Removal of organic materials from TNT red water by Bamboo

Charcoal adsorption. Chemical engineering journal. 2012; 193: 39-49. doi: 10.1016/j.cej.2012.03.039.

Binks PR, French CE, Nicklin S, Bruce NC. Degradation of pentaerythritol tetranitrate by Enterobacter

cloacae PB2. Applied and Environmental Microbiology. 1996; 62(4): 1214-9. PMID: 8919782. PMCID:

PMC167887.

White GF, Snape JR. Microbial cleavage of nitrate esters: defusing the environment. Microbiology. 1993;

(9): 1947-57. doi: 10.1099/00221287-139-9-1947. PMID: 8245825.

Esteve-Núñez A, Caballero A, Ramos JL. Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol

Biol Rev. 2001; 65(3): 335-52. doi: 10.1128/MMBR.65.3.335-352.2001. PMID: 11527999, PMCID:

PMC99030.

Knicker H, Achtnich C, Lenke H. Solid-state nitrogen-15 nuclear magnetic resonance analysis of

biologically reduced 2,4,6-trinitrotoluene in a soil slurry remediation. J Environ Qual. 2001; 30(2): 403-10.

PMID: 11285900.

Funk SB, Roberts DJ, Crawford DL, Crawford RL. Initial-phase optimization for bioremediation of

munition compound-contaminated soils. Appl Environ Microbiol. 1993; 59(7): 2171-7. PMID: 8357251,

PMCID: PMC182253.

Szulc A, Ambrożewicz D, Sydow M, Ławniczak Ł, Piotrowska-Cyplik A, Marecik R, et al. The influence

of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil:

Feasibility during field studies. J Environ Manage. 2014; 132: 121-8. doi: 10.1016/j.jenvman.2013.11.006.

PMID: 24291585.

Harms H, Bosma TN. Mass transfer limitation of microbial growth and pollutant degradation. Journal of

Industrial Microbiology and Biotechnology. 1997; 18(2-3): 97-105. doi: 10.1038/sj.jim.2900259.

Makkar RS, Rockne KJ. Comparison of synthetic surfactants and biosurfactants in enhancing

biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem. 2003; 22(10): 2280-92.

PMID: 14551990.

Bordoloi NK, Konwar BK. Bacterial biosurfactant in enhancing solubility and metabolism of petroleum

hydrocarbons. J Hazard Mater. 2009; 170(1): 495-505. doi: 10.1016/j.jhazmat.2009.04.136. PMID:

Chrzanowski Ł, Ławniczak Ł, Czaczyk K. Why do microorganisms produce rhamnolipids?. World J

Microbiol Biotechnol. 2012; 28(2): 401-19. doi: 10.1007/s11274-011-0854-8. PMID: 22347773, PMCID:

PMC3270259.

Xin B, Shen M, Aslam H, Wu F. Remediation of explosive-polluted soil in slurry phase by aerobic

biostimulation. In Journal of Physics: Conference Series. IOP Publishing. 2013; 439(1): 012047.

Pawlowsky U, Howell JA. Mixed culture biooxidation of phenol. I. Determination of kinetic parameters.

Biotechnology and Bioengineering. 1973; 15(5): 889-96. doi: 10.1002/bit.260150506.

Admassu W, Sethuraman AV, Crawford R, Korus RA. Growth kinetics of Clostridium bifermentans and its

ability to degrade TNT using an inexpensive alternative medium. Bioremediation Journal. 1998; 2(1):17- 28. doi: 10.1080/10889869891214187.

Ormaza-González FI, Villalba-Flor AP. The measurement of nitrite, nitrate and phosphate with test kits and

standard procedures: A comparison. Water Research. 1994; 28(10): 2223-8. doi: 10.1016/0043- 1354(94)90035-3.

Der Yang R, Humphrey AE. Dynamic and steady state studies of phenol biodegradation in pure and mixed

cultures. Biotechnology and Bioengineering. 1975; 17(8): 1211-35. doi: 10.1002/bit.260170809.

Bruns-Nagel D, Drzyzga O, Steinbach K, Schmidt TC, Von Loew E, Gorontzy T, et al. Anaerobic/aerobic

composting of 2,4,6-trinitrotoluene-contaminated soil in a reactor system. Environmental science &

technology. 1998; 32(11): 1676-9. doi: 10.1021/es970757z.

Park C, Kim TH, Kim S, Lee J, Kim SW. Biokinetic parameter estimation for degradation of 2,4,6-

trinitrotoluene (TNT) with Pseudomonas putida KP-T201. J Biosci Bioeng. 2002; 94(1):57-61. PMID:

Mishra S, Jyot J, Kuhad RC, Lal B. Evaluation of inoculum addition to stimulate in situ bioremediation of

oily-sludge-contaminated soil. Appl Environ Microbiol. 2001; 67(4): 1675-81. doi:

1128/AEM.67.4.1675-1681.2001. PMID: 11282620, PMCID: PMC92784.

Liu PW, Chang TC, Whang LM, Kao CH, Pan PT, Cheng SS. Bioremediation of petroleum hydrocarbon

contaminated soil: effects of strategies and microbial community shift. International Biodeterioration &

Biodegradation. 2011; 65(8): 1119-27. doi: 10.1016/j.ibiod.2011.09.002.

Lin TC, Pan PT, Young CC, Chang JS, Chang TC, Cheng SS. Evaluation of the optimal strategy for ex situ

bioremediation of diesel oil-contaminated soil. Environ Sci Pollut Res Int. 2011; 18(9): 1487-96. doi:

1007/s11356-011-0485-5. PMID: 21538227.

Volkering F, Breure AM, van Andel JG, Rulkens WH. Influence of nonionic surfactants on bioavailability

and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol. 1995; 61(5): 1699-705.

PMID: 16535016, PMCID: PMC1388434.

Zhang YI, Miller RM. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid

surfactant (biosurfactant). Appl Environ Microbiol. 1992; 58(10): 3276-82. PMID: 1444363, PMCID:

PMC183091.

Beal R, Betts WB. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in

Pseudomonas aeruginosa. J Appl Microbiol. 2000; 89(1): 158-68. PMID: 10945793.

Noordman WH, Wachter JH, De Boer GJ, Janssen DB. The enhancement by surfactants of hexadecane

degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotechnol. 2002; 94(2): 195- 212. PMID: 11796172.

Al-Awadhi N, Williamson KJ, Isok JD. Remediation of Kuwait's oil-contaminated soils. Hydrocarbon

contaminated soils and ground water. 1993; 3: 9-21.

Rahman KS, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM. Enhanced bioremediation of n- alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients.

Bioresour Technol. 2003; 90(2): 159-68. doi: 10.1016/S0960-8524(03)00114-7. PMID: 12895559.

Park KS, Sims RC, Dupont RR. Transformation of PAHs in soil systems. Journal of Environmental

Engineering. 1990; 116(3): 632-40. doi: 10.1061/ASCE.0733-9372116:3(632).

Zhuang L, Gui L, Gillham RW. Biodegradation of pentaerythritol tetranitrate (PETN) by anaerobic

consortia from a contaminated site. Chemosphere. 2012; 89(7): 810-6. doi:

1016/j.chemosphere.2012.04.062. PMID: 22647196.

Zhuang L, Gui L, Gillham RW. Degradation of pentaerythritol tetranitrate (PETN) by granular iron.

Environ Sci Technol. 2008; 42(12): 4534-9. doi: 10.1021/es7029703. PMID: 18605582.

Published

2022-02-12