The potential role of cell surface complement regulators and circulating CD4+ CD25+ T-cells in the development of autoimmune myasthenia gravis

Authors

  • Mohamed Nasreldin Thabit Hamdoon Department of Neurology, Sohag University, Sohag, Egypt

Keywords:

CD55; CD59; Myasthenia Gravis; Regulatory T-lymphocytes

Abstract

Introduction: CD4+CD25+ regulatory T-lymphocytes (T-regs) and regulators of complement activity (RCA) involving CD55 and CD59 play an important role in the prevention of autoimmune diseases. However, their role in the pathogenesis of human autoimmune myasthenia gravis (MG) remains unclear. This study aimed to determine the frequency of peripheral blood T-regs and CD4+ T-helper (T-helper) cells and the red blood cells (RBCs) level of expression of CD55 and CD59 in MG patients.

Methods: Fourteen patients with MG in neurology outpatient clinics of Sohag University Hospital and Sohag General Hospital from March 2014 to December 2014, and 10 age-matched healthy controls participated in this case-control study. We did flowcytometric assessments of the percentage of peripheral T-regs and T-helper cells and the level of expression of CD55 and CD59 on RBCs in the peripheral blood of patients and controls. 

Results: There was a statistically significant decrease in the percentage of peripheral blood T-regs and T-regs/T-helper cell ratio in the MG patients group. Moreover, the level of expression of CD55, CD59, and dual expression of CD55/CD59 on RBCs were statistically significantly lower in MG patients than those of healthy controls. However, regression analysis indicated that there was no significant correlation between all the measured parameters and disease duration or staging. 

Conclusion: Functional defects in the T-regs and RCA may play a role in the pathogenesis of autoimmune MG and their functional modulation may represent an alternative therapeutic strategy for MG treatment.

 

References

Ha JC, Richman DP. Myasthenia gravis and related disorders: Pathology and molecular pathogenesis.

Biochim Biophys Acta. 2015; 1852(4): 651-7. doi: 10.1016/j.bbadis.2014.11.022, PMID: 25486268.

Sieb JP. Myasthenia gravis: an update for the clinician. Clin Exp Immunol. 2014; 175(3): 408-18. doi:

1111/cei.12217, PMID: 24117026, PMCID: PMC3927901.

Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis: past, present, and future. J Clin Invest. 2006;

(11): 2843-54. doi: 10.1172/JCI29894, PMID: 17080188, PMCID: PMC1626141.

Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol. 2002; 2(10): 797-804.

doi: 10.1038/nri916, PMID: 12360217.

Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptorrelated protein 4 in myasthenia gravis. Ann Neurol. 2011; 69(2): 418-22. doi: 10.1002/ana.22312, PMID:

Jarius S, Paul F, Franciotta D, de Seze J, Münch C, Salvetti M, et al. Neuromyelitis optica spectrum

disorders in patients with myasthenia gravis: ten new aquaporin-4 antibody positive cases and a review of

the literature. Mult Scler. 2012; 18(8): 1135-43. doi: 10.1177/1352458511431728, PMID: 22183934.

Pevzner A, Schoser B, Peters K, Cosma NC, Karakatsani A, Schalke B, et al. Anti-LRP4 autoantibodies in

AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol. 2012; 259(3): 427-35. doi:

1007/s00415-011-6194-7, PMID: 21814823.

Vaknin-Dembinsky A, Abramsky O, Petrou P, Ben-Hur T, Gotkine M, Brill L, et al. Myasthenia gravis- associated neuromyelitis optica-like disease: an immunological link between the central nervous system

and muscle? Arch Neurol. 2011; 68(12): 1557-61. doi: 10.1001/archneurol.2011.200, PMID: 21825214.

Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L. LRP4 serves as a coreceptor of agrin. Neuron.

; 60(2): 285-97. doi: 10.1016/j.neuron.2008.10.006, PMID: 18957220, PMCID: PMC2743173.

Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA, et al. Autoantibodies to lipoproteinrelated protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol. 2012; 69(4): 445-51.

doi: 10.1001/archneurol.2011.2393, PMID: 22158716.

Kawakami Y, Ito M, Hirayama M, Sahashi K, Ohkawara B, Masuda A, et al. Anti-MuSK autoantibodies

block binding of collagen Q to MuSK. Neurology. 2011; 77(20): 1819-26. doi:

1212/WNL.0b013e318237f660, PMID: 22013178, PMCID: PMC3233209.

Eng H, Lefvert AK, Mellstedt H, Osterborg A. Human monoclonal immunoglobulins that bind the human

acetylcholine receptor. Eur J Immunol. 1987; 17(12): 1867-9. doi: 10.1002/eji.1830171232, PMID:

Wang ZY, Okita DK, Howard J Jr, Conti-Fine BM. T-cell recognition of muscle acetylcholine receptor

subunits in generalized and ocular myasthenia gravis. Neurology. 1998; 50(4): 1045-54. doi:

1212/WNL.50.4.1045, PMID: 9566393.

Whiting PJ, Vincent A, Newsom-Davis J. Acetylcholine receptor antibody characteristics in myasthenia

gravis. Fractionation of alpha-bungarotoxin binding site antibodies and their relationship to IgG subclass. J

Neuroimmunol. 1983; 5(1): 1-9. doi: 10.1016/0165-5728(83)90022-X.

Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000; 101(5): 455-8.

doi: 10.1016/S0092-8674(00)80856-9.

Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated

T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance

causes various autoimmune diseases. J Immunol. 1995; 155(3): 1151-64. PMID: 7636184.

Saoudi A, Seddon B, Fowell D, Mason D. The thymus contains a high frequency of cells that prevent

autoimmune diabetes on transfer into prediabetic recipients. J Exp Med. 1996; 184(6): 2393-8. doi:

1084/jem.184.6.2393, PMID: 8976193, PMCID: PMC2196374.

Shevach EM, Piccirillo CA, Thornton AM, McHugh RS. Control of T cell activation by CD4+CD25+

suppressor T cells. Novartis Found Symp. 2003; 252: 24-36; discussion -44, 106-14.

Boyer O, Saadoun D, Abriol J, Dodille M, Piette JC, Cacoub P, et al. CD4+CD25+ regulatory T-cell

deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis. Blood. 2004; 103(9): 3428-30.

doi: 10.1182/blood-2003-07-2598, PMID: 14684420.

Cao D, Malmstrom V, Baecher-Allan C, Hafler D, Klareskog L, Trollmo C. Isolation and functional

characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid

arthritis. Eur J Immunol. 2003; 33(1): 215-23. doi: 10.1002/immu.200390024, PMID: 12594850.

Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, et al. Multiple immuno-regulatory defects in

type-1 diabetes. J Clin Invest. 2002; 109(1): 131-40. doi: 10.1172/JCI0213605, PMID: 11781358, PMCID:

PMC150819.

Putheti P, Morris M, Stawiarz L, Teleshova N, Kivisäkk P, Pashenkov M, et al. Multiple sclerosis: a study

of chemokine receptors and regulatory T cells in relation to MRI variables. Eur J Neurol. 2003; 10(5):529- 35. doi: 10.1046/j.1468-1331.2003.00638.x, PMID: 12940835.

Aricha R, Feferman T, Berrih-Aknin S, Fuchs S, Souroujon MC. Experimental myasthenia gravis in Aire- deficient mice: a link between Aire and regulatory T cells. Ann N Y Acad Sci. 2012; 1275:107-13. doi:

1111/j.1749-6632.2012.06843.x, PMID: 23278585.

Gertel-Lapter S, Mizrachi K, Berrih-Aknin S, Fuchs S, Souroujon MC. Impairment of regulatory T cells in

myasthenia gravis: studies in an experimental model. Autoimmun Rev. 2013; 12(9): 894-903. doi:

1016/j.autrev.2013.03.009, PMID: 23535156.

Sheng JR, Muthusamy T, Prabhakar BS, Meriggioli MN. GM-CSF-induced regulatory T cells selectively

inhibit anti-acetylcholine receptor-specific immune responses in experimental myasthenia gravis. J

Neuroimmunol. 2011; 240-41: 65-73. doi: 10.1016/j.jneuroim.2011.10.010, PMID: 22099723, PMCID:

PMC3234297.

Thiruppathi M, Rowin J, Li Jiang Q, Sheng JR, Prabhakar BS, Meriggioli MN. Functional defect in

regulatory T cells in myasthenia gravis. Ann N Y Acad Sci. 2012; 1274: 68-76. doi: 10.1111/j.1749- 6632.2012.06840.x, PMID: 23252899, PMCID: PMC3531815.

Fattorossi A, Battaglia A, Buzzonetti A, Ciaraffa F, Scambia G, Evoli A. Circulating and thymic CD4

CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology. 2005;

(1): 134-41. doi: 10.1111/j.1365-2567.2005.02220.x, PMID: 16108825, PMCID: PMC1802400.

Li X, Xiao BG, Xi JY, Lu CZ, Lu JH. Decrease of CD4(+)CD25(high)Foxp3(+) regulatory T cells and

elevation of CD19(+)BAFF-R(+) B cells and soluble ICAM-1 in myasthenia gravis. Clin Immunol. 2008;

(2): 180-8. doi: 10.1016/j.clim.2007.10.001, PMID: 18054287.

Masuda M, Matsumoto M, Tanaka S, Nakajima K, Yamada N, Ido N, et al. Clinical implication of

peripheral CD4+CD25+ regulatory T cells and Th17 cells in myasthenia gravis patients. J Neuroimmunol.

; 225(1-2): 123-31. doi: 10.1016/j.jneuroim.2010.03.016, PMID: 20472307.

Thiruppathi M, Rowin J, Ganesh B, Sheng JR, Prabhakar BS, Meriggioli MN. Impaired regulatory function

in circulating CD4(+)CD25(high)CD127(low/-) T cells in patients with myasthenia gravis. Clin Immunol.

; 145(3): 209-23. doi: 10.1016/j.clim.2012.09.012, PMID: 23110942, PMCID: PMC3501560.

Zhang Y, Wang HB, Chi LJ, Wang WZ. The role of FoxP3+CD4+CD25hi Tregs in the pathogenesis of

myasthenia gravis. Immunol Lett. 2009; 122(1): 52-7. doi: 10.1016/j.imlet.2008.11.015, PMID: 19111574.

Huang Y, Pirskanen R, Ciscombe R, Link H, Lefvert AK. Circulating CD4+CD25+ and CD4+CD25- T

cells in myasthenia gravis. Ann N Y Acad Sci. 2003; 998: 318-9. doi: 10.1196/annals.1254.034, PMID:

Huang YM, Pirskanen R, Giscombe R, Link H, Lefvert AK. Circulating CD4+CD25+ and CD4+CD25+ T

cells in myasthenia gravis and in relation to thymectomy. Scand J Immunol. 2004; 59(4): 408-14. doi:

1111/j.0300-9475.2004.01410.x, PMID: 15049785.

Kaminski HJ, Kusner LL, Richmonds C, Medof ME, Lin F. Deficiency of decay accelerating factor and

CD59 leads to crisis in experimental myasthenia. Exp Neurol. 2006; 202(2): 287-93. doi:

1016/j.expneurol.2006.06.003, PMID: 16859686.

Kaminski HJ, Li Z, Richmonds C, Lin F, Medof ME. Complement regulators in extraocular muscle and

experimental autoimmune myasthenia gravis. Exp Neurol. 2004; 189(2): 333-42. doi:

1016/j.expneurol.2004.06.005, PMID: 15380483.

Lin F, Kaminski HJ, Conti-Fine BM, Wang W, Richmonds C, Medof ME. Markedly enhanced

susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor

protection. J Clin Invest. 2002; 110(9): 1269-74. doi: 10.1172/JCI0216086, PMID: 12417565, PMCID:

PMC151616.

Soltys J, Halperin JA, Xuebin Q. DAF/CD55 and Protectin/CD59 modulate adaptive immunity and disease

outcome in experimental autoimmune myasthenia gravis. J Neuroimmunol. 2012; 244(1-2): 63-9. doi:

1016/j.jneuroim.2012.01.003, PMID: 22325826.

Tuzun E, Saini SS, Morgan BP, Christadoss P. Complement regulator CD59 deficiency fails to augment

susceptibility to actively induced experimental autoimmune myasthenia gravis. J Neuroimmunol. 2006;

(1-2): 29-33. doi: 10.1016/j.jneuroim.2006.07.016, PMID: 17056125.

Bouneaud C, Kourilsky P, Bousso P. Impact of negative selection on the T cell repertoire reactive to a self- peptide: a large fraction of T cell clones escapes clonal deletion. Immunity. 2000; 13(6): 829-40. doi:

1016/S1074-7613(00)00080-7.

Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DA. The development and

function of regulatory T cells. Cell Mol Life Sci. 2009; 66(16): 2603-22. doi: 10.1007/s00018-009-0026-2,

PMID: 19390784, PMCID: PMC2715449.

Baecher-Allan C, Hafler DA. Human regulatory T cells and their role in autoimmune disease. Immunol

Rev. 2006; 212: 203-16. doi: 10.1111/j.0105-2896.2006.00417.x, PMID: 16903916.

Torgerson TR. Regulatory T cells in human autoimmune diseases. Springer Semin Immunopathol. 2006;

(1): 63-76. doi: 10.1007/s00281-006-0041-4, PMID: 16902772.

Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in

human autoimmune diseases. Nat Rev Immunol. 2010; 10(12): 849-59. doi: 10.1038/nri2889, PMID:

, PMCID: PMC3046807.

Moes N, Rieux-Laucat F, Begue B, Verdier J, Neven B, Patey N, et al. Reduced expression of FOXP3 and

regulatory T-cell function in severe forms of early-onset autoimmune enteropathy. Gastroenterology. 2010;

(3): 770-8. doi: 10.1053/j.gastro.2010.06.006, PMID: 20537998.

Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T regulatory cell function in patients

with active systemic lupus erythematosus. J Immunol. 2007; 178(4): 2579-88. doi:

4049/jimmunol.178.4.2579, PMID: 17277168.

Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens JL, et al. Compromised CD4+

CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated

with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level.

Immunology. 2008; 123(1): 79-89. doi: 10.1111/j.1365-2567.2007.02690.x, PMID: 17897326, PMCID:

PMC2433271.

Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune

system. Nat Rev Immunol. 2010; 10(7): 490-500. doi: 10.1038/nri2785, PMID: 20559327.

Kemper C, Atkinson JP. T-cell regulation: with complements from innate immunity. Nat Rev Immunol.

; 7(1): 9-18. doi: 10.1038/nri1994, PMID: 17170757.

Walport MJ. Complement. Second of two parts. N Engl J Med. 2001; 344(15): 1140-4. PMID: 11297706.

Walport MJ. Complement. First of two parts. N Engl J Med. 2001; 344(14): 1058-66. PMID: 11287977.

Farkas I, Baranyi L, Ishikawa Y, Okada N, Bohata C, Budai D, et al. CD59 blocks not only the insertion of

C9 into MAC but inhibits ion channel formation by homologous C5b-8 as well as C5b-9. J Physiol. 2002;

(Pt 2): 537-45. doi: 10.1113/jphysiol.2001.013381, PMID: 11882685, PMCID: PMC2290142.

Lublin DM, Atkinson JP. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu

Rev Immunol. 1989; 7: 35-58. doi: 10.1146/annurev.iy.07.040189.000343, PMID: 2469439.

Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, et al. Extraocular muscle is

defined by a fundamentally distinct gene expression profile. Proc Natl Acad Sci U S A. 2001; 98(21):

-7. doi: 10.1073/pnas.211257298, PMID: 11572940, PMCID: PMC59827.

Published

2022-02-12