Design and construction of a DNA origami drug delivery system based on MPT64 antibody aptamer for tuberculosis treatment

Authors

  • Mohammad Sadegh Hafezi-Moghadam M.Sc., Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran

Keywords:

DNA, nanomedicine, nanostructures, drug delivery Systems, tuberculosis

Abstract

Introduction: With all of the developments on infectious diseases, tuberculosis (TB) remains a cause of death among people. One of the most promising assembly techniques in nano-technology is “scaffolded DNA origami” to design and construct a nano-scale drug delivery system. Because of the global health problems of tuberculosis, the development of potent new anti-tuberculosis drug delivery system without cross-resistance with known anti-mycobacterial agents is urgently needed. The aim of this study was to design a nano-scale drug delivery system for TB treatment using the DNA origami method

Methods: In this study, we presented an experimental research on a DNA drug delivery system for treating Tuberculosis. TEM images were visualized with an FEI Tecnai T12 BioTWIN at 120 kV. The model was designed by caDNAno software and computational prediction of the 3D solution shape and its flexibility was calculated with a CanDo server.

Results:  Synthesizing the product was imaged using transmission electron microscopy after negative-staining by uranyl formate.  

Conclusion: We constructed a multilayer 3D DNA nanostructure system by designing square lattice geometry with the scaffolded-DNA-origami method. With changes in the lock and key sequences, we recommend that this system be used for other infectious diseases to target the pathogenic bacteria.

References

Chen F1, Zhou J, Luo F, Mohammed AB, Zhang XL. Aptamer from whole-bacterium SELEX as new

therapeutic reagent against virulent Mycobacterium tuberculosis. Biochemical and biophysical research

communications, 2007. 357(3): 743-8. Doi: 10.1016/j.bbrc.2007.04.007, PMid: 17442275

Raviglione, M.C. The TB epidemic from 1992 to 2002. Tuberculosis, 2003. 83(1): 4-14. Doi: 10.1016/S1472- 9792(02)00071-9

Mckinney, J.D., W.R. Jacobs, and B.R. Bloom, Persisting problems in tuberculosis. 1998, Academic Press.

Velayati AA, Farnia P, Merza MA, Zhavnerko GK, Tabarsi P, Titov LP, et al. New insight into extremely

drug-resistant tuberculosis: using atomic force microscopy. European Respiratory Journal, 2010. 36(6):

-3. Doi: 10.1183/09031936.00064510, PMid: 21119210

Farnia P, Mohammad RM, Merza MA, Tabarsi P, Zhavnerko GK, Ibrahim TA, et al. Growth and cell-division

in extensive (XDR) and extremely drug resistant (XXDR) tuberculosis strains: transmission and atomic force

observation. Int J Clin Exp Med, 2010. 3(4): 308-14. PMID: 21072265, PMCID: PMC2971545

Khorvash F, Javadi AA, Izadi M, Jonaidi Jafari N, Ranjbar R. Spinal tuberculosis: a major public health

hazard in Isfahan. Pak J Biol Sci., 2007. 10(19): 3400-4. PMid:19090158

Tomioka, H., Current status of some antituberculosis drugs and the development of new antituberculous

agents with special reference to their in vitro and in vivo antimicrobial activities. Current pharmaceutical

design, 2006. 12(31): 4047-70. Doi: 10.2174/138161206778743646, PMid: 17100611

Zhu C, Liu J, Ling Y, Yang H, Liu Z, Zheng R, et al. Evaluation of the clinical value of ELISA based on

MPT64 antibody aptamer for serological diagnosis of pulmonary tuberculosis. BMC Infect Dis. 2012. 12(1):

Doi: 10.1186/1471-2334-12-96, PMid: 22520654, PMCid: PMC3410803

Hampson SJ, Parker MC, Saverymuttu SH, Joseph AE, Mcfadden JJP, Hermon-Taylor J. Quadruple

antimycobacterial chemotherapy in Crohn's disease: results at 9 months of a pilot study in 20 patients.

Alimentary pharmacology & therapeutics, 1989. 3(4): 343-52. Doi: 10.1111/j.1365-2036.1989.tb00221.x

Rothemund, P.W., Folding DNA to create nanoscale shapes and patterns. Nature, 2006. 440(7082): p. 297- 302. Doi: 10.1038/nature04586, PMid: 16541064

Yan H, LaBean TH, Feng L, Reif JH. Directed nucleation assembly of DNA tile complexes for barcode- patterned lattices. Proceedings of the National Academy of Sciences, 2003. 100(14): 8103-8. Doi:

1073/pnas.1032954100, PMid: 12821776, PMCid: PMC166189

Shih, W.M., J.D. Quispe, and G.F. Joyce, A 1.7-k ilobase single-stranded DNA that folds into a nanoscale

octahedron. Nature, 2004. 427: 618–21. Doi: 10.1038/nature02307, PMid: 14961116

Williamson, J.R., RNA origami. Nature Structural & Molecular Biology, 1994. 1(5): 270-2. Doi:

1038/nsb0594-270

Zadegan, R.M. and M.L. Norton, Structural DNA Nanotechnology: From Design to Applications. Int J Mol

Sci. 2012. 13: 14. Doi: 10.3390/ijms13067149, PMid: 22837684, PMCid: PMC3397516

Rothemund, P., Scaffolded DNA origami: from generalized multicrossovers to polygonal networks.

Nanotechnology: science and computation. Natural Computing Series. New York: Springer, 2006: p. 3–21.

LeHotan, C., Growth Quantification and Length Distributions of DNA Origami Polymers. 2013.

Nangreave, J., et al., DNA origami: a history and current perspective. Curr Opin Chem Biol. 2010. 14(5):

-15. doi: 10.1016/j.cbpa.2010.06.182, PMID: 20643573

Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM. Self-assembly of DNA into nanoscale three- dimensional shapes. Nature, 2009. 459(7245): 414-8. Doi: 10.1038/nature08016, PMid: 19458720, PMCid:

PMC2688462

Dietz, H., S.M. Douglas, and W.M. Shih, Folding DNA into twisted and curved nanoscale shapes. Science,

325(5941): 725-30. Doi: 10.1126/science.1174251, PMid: 19661424, PMCid: PMC2737683

Ke Y, Douglas SM, Liu M, Sharma J, Cheng A, Leung A, et al. Multilayer DNA Origami Packed on a Square

Lattice. J Am Chem Soc. 2009; 131(43):15903-8. doi: 10.1021/ja906381y. PMID: 19807088, PMCID:

PMC2821935

Castro CE, Kilchherr F, Kim D, Shiao EL, Wauer T, Wortmann P, et al. A primer to scaffolded DN A

origami. NATURE METHODS, 2011. 8: 9. doi:10.1038/nmeth.1570

Douglas, S.M., I. Bachelet, and G.M. Church, A logic-gated nanorobot for targeted transport of molecular

payloads. Science, 2012. 335(6070): 831-4. Doi: 10.1126/science.1214081, PMid: 22344439

Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM. Rapid prototyping

of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009. 37(15):5001-6. doi:

1093/nar/gkp436, PMID: 19531737, PMCID: PMC2731887

Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Self-assembly of a nanoscale

DNA box with a controllable lid. Nature, 2009. 459(7243): 73-6. Doi: 10.1038/nature07971, PMid:

Hamaguchi, N., A. Ellington, and M. Stanton, Aptamer beacons for the direct detection of proteins.

Analytical biochemistry, 2001. 294(2): 126-31. Doi: 10.1006/abio.2001.5169, PMid: 11444807

Nutiu, R. and Y. Li, In Vitro Selection of Structure‐Switching Signaling Aptamers. Angewandte Chemie,

117(7): 1085-9. Doi: 10.1002/ange.200461848

Steinhauer C, Jungmann R, Sobey TL, Simmel FC, Tinnefeld P. DNA Origami as a Nanoscopic Ruler for

Super‐Resolution Microscopy. Angewandte Chemie International Edition, 2009. 48(47): 8870-3. Doi:

1002/anie.200903308, PMid: 19830751

Sanderson, K., Bioengineering: What to make with DNA origami. Nature, 2010. 464(7286): 158. Doi:

1038/464158a, PMid: 20220817

Published

2022-02-21