Nanocomposites in food packaging applications and their risk assessment for health

Authors

  • Zahra Hadian Ph.D. of Food Technology, Assistant Professor of Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Keywords:

Nanocomposite; Food; Packaging: Risk assessment

Abstract

Nanotechnology has shown many advantages in different fields. As the uses of nanotechnology have progressed, it has been found to be a promising technology for the food packaging industry in the global market. It has proven capabilities that are valuable in packaging foods, including improved barriers; mechanical, thermal, and biodegradable properties; and applications in active and intelligent food packaging. Examples of the latter are anti-microbial agents and nanosensors, respectively. However, the use of nanocomposites in food packaging might be challenging due to the reduced particle size of nanomaterials and the fact that the chemical and physical characteristics of such tiny materials may be quite different from those of their macro-scale counterparts. In order to discuss the potential risks of nanoparticles for consumers, in addition to the quantification of data, a thorough investigation of their characteristics is required. Migration studies must be conducted to determine the amounts of nanomaterials released into the food matrices. In this article, different applications of nanocomposites in food packaging, migration issues, analyzing techniques, and the main concerns about their usage are discussed briefly

References

Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M. Detection and characterization of

engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control

Expo Risk Assess. 2008; 25(7): 795-821. doi: 10.1080/02652030802007553. PMID: 18569000.

Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol. 2003;

(3): 337-46. doi: 10.1016/S0958-1669(03)00068-5. PMID: 12849790.

Huang JY, Li X, Zhou W. Safety assessment of nanocomposite for food packaging application. Trends in

Food Science & Technology. 2015; 45(2): 187-99. doi: 10.1016/j.tifs.2015.07.002.

Matthews FL, Rawlings RD. Composite materials: engineering and science: Elsevier; 1999.

Arora A, Padua GW. Review: nanocomposites in food packaging. J Food Sci. 2010; 75(1): 43-9. doi:

1111/j.1750-3841.2009.01456.x. PMID: 20492194.

Aminabhavi TM, Balundgi RH, Cassidy PE. A review on biodegradable plastics. Polymer-Plastics

Technology and Engineering. 1990; 29(3): 235-62. doi: 10.1080/03602559008049843.

Crosby NT. Food packaging materials. Aspects of analysis and migration of contaminants: Applied Science

Publishers Ltd. 1981; ISBN 0-85334-926-6.

Doi Y. Microbial polyesters. VCH Publishers. 1990; 156.

Sorrentino A, Gorrasi G, Vittoria V. Potential perspectives of bio-nanocomposites for food packaging

applications. Trends in Food Science & Technology. 2007; 18(2): 84-95. doi: 10.1016/j.tifs.2006.09.004.

Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG. Biodegradable starch/clay

nanocomposite films for food packaging applications. Food chemistry. 2005; 93(3): 467-74. doi:

1016/j.foodchem.2004.10.024.

Yam KL, Lee DS. Emerging food packaging technologies, Principles and practice. Elsevier. 2012; doi:

1533/9780857095664.

Azeredo H, Mattoso LHC, Wood D, Williams TG, Avena‐Bustillos RJ, McHugh TH. Nanocomposite

edible films from mango puree reinforced with cellulose nanofibers. Journal of food science. 2009; 74(5):

-5. doi: 10.1111/j.1750-3841.2009.01186.x. PMID: 19646052.

McGlashan SA, Halley PJ. Preparation and characterisation of biodegradable starch‐based nanocomposite

materials. Polymer International. 2003; 52(11): 1767-73. doi: 10.1002/pi.1287.

Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a

new class of materials. Materials Science and Engineering: R: Reports. 2000; 28(1): 1-63. doi:

1016/S0927-796X(00)00012-7. doi: 10.1533/9780857095664.

Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, et al. Functionalized

graphene sheets for polymer nanocomposites. Nature nanotechnology. 2008; 3(6): 327-31. doi:

1038/nnano.2008.96.

Duncan TV. Applications of nanotechnology in food packaging and food safety: Barrier materials,

antimicrobials and sensors. J Colloid Interface Sci. 2011; 363(1): 1-24. doi: 10.1016/j.jcis.2011.07.017.

PMID: 21824625.

Demetrakakes P. Nanocomposites raise barriers, but also face them: Clay-based additives increase the

barrier qualities of plastics, but obstacles to commercialization must be overcome. Nanocomposite

Materials. 2002.

Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing.

Progress in polymer science. 2003; 28(11): 1539-641. doi: 10.1016/j.progpolymsci.2003.08.002.

Ray S, Quek SY, Easteal A, Chen XD. The potential use of polymer-clay nanocomposites in food

packaging. International Journal of Food Engineering. 2006; 2(4): 1556-3758. doi: 10.2202/1556- 3758.1149.

Ray SS, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: in greening the

st century materials world. Progress in materials science. 2005; 50(8): 962-1079. doi:

1016/j.pmatsci.2005.05.002.

Rhim JW, Lee JH, Kwak HS. Mechanical and water barrier properties of soy protein and clay mineral

composite films. Food Science and Biotechnology. 2005; 14(1): 112-6.

Rhim JW, Lee JH, Hong SI. Increase in water resistance of paperboard by coating with poly (lactide).

Packaging Technology and Science. 2007; 20(6): 393-402. doi: 10.1002/pts.767.

Zhao R, Torley P, Halley PJ. Emerging biodegradable materials: starch-and protein-based bio- nanocomposites. Journal of Materials Science. 2008; 43(9): 3058-71. doi: 10.1007/s10853-007-2434-8.

Huang J, He C, Liu X, Xu J, Tay CS, Chow SY. Organic–inorganic nanocomposites from cubic

silsesquioxane epoxides: direct characterization of interphase, and thermomechanical properties. Polymer.

; 46(18): 7018-27. doi: 10.1016/j.polymer.2005.05.150.

Cyras VP, Manfredi LB, Ton That MT, Vázquez A. Physical and mechanical properties of thermoplastic

starch/montmorillonite nanocomposite films. Carbohydrate Polymers. 2008; 73(1): 55-63. doi:

1016/j.carbpol.2007.11.014.

Burdock GA. Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food and

Chemical Toxicology. 2007; 45(12): 2341-51. doi: 10.1016/j.fct.2007.07.011. PMID: 17723258.

De Moura M, Avena Bustillos R, McHugh T, Krochta J, Mattoso L. Properties of novel hydroxypropyl

methylcellulose films containing chitosan nanoparticles. Journal of food science. 2008; 73(7): 31-7. doi:

1111/j.1750-3841.2008.00872.x.

Sothornvit R, Krochta JM. Plasticizers in edible films and coatings. Innovations in food packaging. 2005:

-33.

Zhou J, Wang S, Gunasekaran S. Preparation and characterization of whey protein film incorporated with

TiO2 nanoparticles. Journal of food science. 2009; 74(7): 50-6. doi: 10.1111/j.1750-3841.2009.01270.x.

Shi L, Zhou J, Gunasekaran S. Low temperature fabrication of ZnO–whey protein isolate nanocomposite.

Materials Letters. 2008; 62(28): 4383-5. doi: 10.1016/j.matlet.2008.07.038.

Smith R. Biodegradable polymers for industrial applications: CRC Press; 2005.

Chen P, Zhang L. Interaction and properties of highly exfoliated soy protein/montmorillonite

nanocomposites. Biomacromolecules. 2006; 7(6): 1700-6. doi: 10.1021/bm050924k.

Yu J, Cui G, Wei M, Huang J. Facile exfoliation of rectorite nanoplatelets in soy protein matrix and

reinforced bionanocomposites thereof. Journal of Applied Polymer Science. 2007; 104(5): 3367-77. doi:

1002/app.25969.

Park HM, Li X, Jin CZ, Park CY, Cho WJ, Ha CS. Preparation and properties of biodegradable

thermoplastic starch/clay hybrids. Macromolecular Materials and Engineering. 2002; 287(8): 553-8. doi:

1002/1439-2054.

Huang J, Xiao Y, Mya KY, Liu X, He C, Dai J, et al. Thermomechanical properties of polyimide-epoxy

nanocomposites from cubic silsesquioxane epoxides. Journal of Materials Chemistry. 2004; 14(19): 2858- 63. doi: 10.1039/B405427J.

Chen B, Evans JR. Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydrate

polymers. 2005; 61(4): 455-63. doi: 10.1016/j.carbpol.2005.06.020.

Yoon SY, Deng Y. Clay–starch composites and their application in papermaking. Journal of Applied

Polymer Science. 2006; 100(2): 1032-8. doi: 10.1002/app.23007.

Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. Nanotechnologies in the food industry– Recent developments, risks and regulation. Trends in Food Science & Technology. 2012; 24(1): 30-46. doi:

1016/j.tifs.2011.10.006.

Rhim JW, Ng PK. Natural biopolymer-based nanocomposite films for packaging applications. Critical

reviews in food science and nutrition. 2007; 47(4): 411-33. doi: 10.1080/10408390600846366.

Laskin AI, Bennett JW, Gadd GM. Advances in applied microbiology: Academic Press; 2003. 41) Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, et al. Copper nanoparticle/polymer

composites with antifungal and bacteriostatic properties. Chemistry of Materials. 2005; 17(21): 5255-62.

doi: 10.1021/cm0505244.

Gu H, Ho P, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial

activities. Nano letters. 2003; 3(9): 1261-3. doi: 10.1021/nl034396z.

Rodriguez F, Sepulveda HM, Bruna J, Guarda A, Galotto MJ. Development of Cellulose Eco ‐

nanocomposites with Antimicrobial Properties Oriented for Food Packaging. Packaging Technology and

Science. 2013; 26(3): 149-60. doi: 10.1002/pts.1980.

Liau S, Read D, Pugh W, Furr J, Russell A. Interaction of silver nitrate with readily identifiable groups:

relationship to the antibacterialaction of silver ions. Letters in applied microbiology. 1997; 25(4): 279-83.

doi: 10.1046/j.1472-765X.1997.00219.x.

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for

Gram-negative bacteria. Journal of colloid and interface science. 2004; 275(1): 177-82. doi:

1016/j.jcis.2004.02.012.

Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water

disinfection and microbial control: potential applications and implications. Water Res. 2008; 42(18): 4591- 602. doi: 10.1016/j.watres.2008.08.015. PMID: 18804836.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of

silver nanoparticles. Nanotechnology. 2005; 16(10): 2346-53. doi: 10.1088/0957-4484/16/10/059. PMID:

Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, et al. Review of health

safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol. 2009; 53(1): 52-62. doi:

1016/j.yrtph.2008.10.008. PMID: 19027049.

Liao F, Chen C, Subramanian V. Organic TFTs as gas sensors for electronic nose applications. Sensors and

Actuators B: Chemical. 2005; 107(2): 849-55. doi: 10.1016/j.snb.2004.12.026.

De Azeredo H.M. Nanocomposites for food packaging applications. Food Research International. 2009;

(9): 1240-53. doi: 10.1016/j.foodres.2009.03.019.

Koo B, Joseph H. Polymer Nanocomposites-Omar Manasreh. McGraw-Hill Professional Pub. 2006; 272.

doi: 10.1036/0071458212.

Echegoyen Y, Nerin C. Nanoparticle release from nano-silver antimicrobial food containers. Food chem

toxicol. 2013; 62: 16-22. doi: 10.1016/j.fct.2013.08.014. PMID: 23954768.

Liu Jf, Yu Sj, Yin Yg, Chao Jb. Methods for separation, identification, characterization and quantification

of silver nanoparticles. Trac Trends in Analytical Chemistry. 2012; 33: 95-106. doi:

1016/j.trac.2011.10.010.

Torres A, Guarda A, Moraga N, Romero J, Galotto MJ. Experimental and theoretical study of

thermodynamics and transport properties of multilayer polymeric food packaging. European Food Research

and Technology. 2012; 234(4): 713-22. doi: 10.1007/s00217-012-1683-1.

de Azeredo HM. Antimicrobial nanostructures in food packaging. Trends in Food Science & Technology.

; 30(1): 56-69. doi: 10.1016/j.tifs.2012.11.006.

Song H, Li B, Lin QB, Wu HJ, Chen Y. Migration of silver from nanosilver–polyethylene composite

packaging into food simulants. Food Additives & Contaminants: Part A. 2011; 28(12): 1758-62. doi:

1080/19440049.2011.603705.

Schmidt B, Katiyar V, Plackett D, Larsen EH, Gerds N, Koch CB, et al. Migration of nanosized layered

double hydroxide platelets from polylactide nanocomposite films. Food Addit Contam Part A Chem Anal

Control Expo Risk Assess. 2011; 28(7): 956-66. doi: 10.1080/19440049.2011.572927. PMID: 21614708.

Bradley EL, Castle L, Chaudhry Q. Applications of nanomaterials in food packaging with a consideration

of opportunities for developing countries. Trends in food science & technology. 2011; 22(11): 604-10. doi:

1016/j.tifs.2011.01.002.

Busolo MA, Lagaron JM. Oxygen scavenging polyolefin nanocomposite films containing an iron modified

kaolinite of interest in active food packaging applications. Innovative Food Science & Emerging

Technologies. 2012; 16: 211-7. doi: 10.1016/j.ifset.2012.06.008.

Hernandez Munoz P, Catala R, Gavara R. Simple method for the selection of the appropriate food simulant

for the evaluation of a specific food/packaging interaction. Food Additives & Contaminants. 2002; 19(1):

-200. doi: 10.1080/02652030110069726.

Munro IC, Haighton LA, Lynch BS, Tafazoli S. Technological challenges of addressing new and more

complex migrating products from novel food packaging materials. Food Additives and Contaminants.

; 26(12): 1534-46. doi: 10.1080/02652030902995277.

Thostenson ET, Li C, Chou TW. Nanocomposites in context. Composites Science and Technology. 2005;

(3): 491-516. doi: 10.1016/j.compscitech.2004.11.003.

Sandoval BM. Perspectives on FDA's regulation of nanotechnology: emerging challenges and potential

solutions. Comprehensive Reviews in Food Science and Food Safety. 2009; 8(4): 375-93. doi:

1111/j.1541-4337.2009.00088.x.

Published

2022-03-07

Issue

Section

Articles