Biosynthesis of Ag nanoparticles using Salicornia bigelovii and its antibacterial activity

Authors

  • Mohammadreza Aflatoonian Ph.D. of Health, Associate Professor, Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran

Keywords:

X-Ray Absorption Spectroscopy, Biosynthesis, Silver, Nanoparticles

Abstract

Background and aim: In recent years, the field of nanotechnology has become the most active area of research in modern material science. While many chemical- as well as physical methods are also used, green synthesis of nanoparticles is becoming the most evolved method of synthesis. In this study, we synthesized silver nanoparticles from the seed extract of Salicornia bigelovii. Methods: This experimental study was conducted from December 2017 to January 2018 in Kerman University of Medical Sciences, Kerman, Iran. The effects of two concentrations (1m M and 4mM) on the synthesis of nanoparticles were studied. Characterizations were done using different methods including ultraviolet (UV) visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Antibacterial activity of Ag nanoparticles against Staphylococcus aureus and Escherichia coli was studied using microdilution method. The data were analyzed using Probit test in SPSS (Version 20, USA).  Results: Formation of the AgNPs was confirmed by surface plasmon spectra using UV–Vis spectrophotometer and absorbance peaks at 434 nm. The FTIR spectra showed the possible role of the functional group like carbonyl groups in reduction of silver ions to silver nanoparticles. The XRD analysis showed that the synthesized silver nanoparticles are of face-centered cubic structure. The TEM showed the formation of silver nanoparticles ranging in diameter from 1 to 50 nm. The minimal inhibitory concentration and minimal bactericidal concentration of AgNPs were determined for both S. aureus and E. coli 6.25 and 12.5 µg/mL, respectively. Conclusion: An environmentally friendly approach is more affordable than chemical methods. Physicochemical approaches can be harmful to the environment and to human health. Thus, the green synthesis methods are simple, less expensive, and can cut consumption of energy; they can be used for synthesis of fixed nanoparticles with preferred shape and size, without the use of toxic chemical agents.

 

References

Khatami M, Alijani H, Sharifi I. Biosynthesis of bimetallic and core shell nanoparticles: their biomedical

applications: A review. IET Nanobio. 2018; 1-19. doi: 10.1049/iet-nbt.2017.0308. 2) Khatami M, Alijani H, Nejad M, Varma R. Core@shell nanoparticles: Greener synthesis using natural plant

products. Applied Sci. 2018; 8(3), 411. doi: 10.3390/app8030411. 3) Bansod SD, Bawaskar MS, Gade AK, Rai MK. Development of shampoo, soap and ointment formulated

by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary

dermatology: treatment and prevention strategies. IET Nanobiotechnol. 2015; 9(4): 165-71. doi:

1049/iet-nbt.2014.0042. PMID: 26224344.

Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical

applications. Trends Biotechnol. 2010; 28(11): 580-8. doi: 10.1016/j.tibtech.2010.07. PMID: 20724010.

Sintubin L, Verstraete W, Boon N. Biologically produced nanosilver: current state and future perspectives.

Biotechnol Bioeng. 2012; 109(10): 2422-36. doi: 10.1002/bit.24570. PMID: 22674445.

Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria.

Environ Sci Technol. 2008; 42(12): 4583-8. PMID: 18605590.

Darroudi M, Sarani M, Kazemi Oskuee R, Khorsand Zak A, Amiri MS. Nanoceria: Gum mediated

synthesis and in vitro viability assay. Ceramics International. 2014; 40(2): 2863-8. doi:

1016/j.ceramint.2013.10.026.

Rahi A, Sattarahmady N, Helis H. Zepto-molar electrochemical detection of Brucella genome based on

gold nanoribbons covered by gold nanoblooms. Sci Rep. 2015; 5: 18060. doi: 10.1038/srep18060. PMID:

, PMCID: PMC4677304.

Negahdary M, Heli H. Applications of Nanoflowers in Biomedicine. Recent Pat Nanotechnol. 2017. doi:

2174/1872210511666170911153428. PMID: 28901846.

Moradi M, Sattarahmady N, Rahi A, Hatam GR, Sorkhabadi SMR, Heli H. A label-free, PCR-free and

signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta. 2016;

: 48-53. doi: 10.1016/j.talanta.2016.08.030. PMID: 27769435.

Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S. Nanostructured CdO-NiO

composite for multifunctional applications. Journal of Physics and Chemistry of Solids. 2018; 112: 106-18.

doi: 10.1016/j.jpcs.2017.09.016.

Karthik K, Dhanuskodi S, Prabu Kumar S, Gobinath C, Sivaramakrishnan S. Microwave assisted green

synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities, Materials Letters. 2017;

: 217-20. doi: 10.1016/j.matlet.2017.07.004.

Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S. Andrographis paniculata

extract mediated green synthesis of CdO nanoparticles and its electrochemical and antibacterial studies.

Journal of Materials Science: Materials in Electronics. 2017; 28: 7991-8001. doi: 10.1007/s10854-017- 6503-8. 14) Jamdagni P, Khatri P, Rana JS. Green synthesis of zinc oxide nanoparticles using flower extract of

Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University-Science. 2016. doi:

1016/j.jksus.2016.10.002.

Jamdagni P, Khatri P, Rana JS. Nanoparticles based DNA conjugates for detection of pathogenic

microorganisms. International Nano Letters. 2016; 6: 139-146. doi: 10.1007/s40089-015-0177-0.

Gopinath K, Karthika V, Sundaravadivelan C, Gowri S, Arumugam A. Mycogenesis of cerium oxide

nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal

activities. Journal of Nanostructure in Chemistry. 2015; 5: 295-303. doi: 10.1007/s40097-015-0161-2.

Poor MHS, Khatami M, Azizi H, Abazari Y. Cytotoxic activity of biosynthesized Ag Nanoparticles by

Plantago major towards a human breast cancer cell line. Rendiconti Lincei. 2017; 28: 693-9. doi:

1007/s12210-017-0641-z.

Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S. Extracellular biosynthesis of silver

nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and

antibacterial activity. World J Microbiol Biotechnol. 2014; 30(2): 693-704. doi: 10.1007/s11274-013-1417- y. PMID: 24068530.

Khatami M, Alijani H, Sharifi I, Sharifi F, Pourseyedi S, Kharazi S, et al. Leishmanicidal Activity of

Biogenic Fe3O4 Nanoparticles. Sci Pharm. 2017; 85(4). doi: 10.3390/scipharm85040036. PMID:

, PMCID: PMC5748533.

Sharifi F, Sharififar F, Sharifii, Alijani H, Khatami M. Cytotoxicity, leishmanicidal, and antioxidant

activity of biosynthesized zinc sulfide nanoparticles using Phoenix dactylifera. IET Nanobiotechnology.

doi: 10.1049/iet-nbt.2017.0204.

Mortazavi M, Khatami M, Sharifi I, Heli H, Kaykavousi K, Sobhani Poor MH, et al. Bacterial Biosynthesis

of Gold Nanoparticles Using Salmonella enterica subsp. enterica serovar Typhi Isolated from Blood and

Stool Specimens of Patients. Journal of Cluster Science. 2017; 28(5): 2997-3007. doi: 10.1007/s10876-017- 1267-0.

Benn T, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics.

Environ Sci Technol. 2008; 42(11): 4133-9. doi: 10.1021/es7032718. PMID: 18589977.

Khatami M, Heli H, Mohammadzadeh Jahani P, Azizi H, Lima Nobre MA. Copper/copper oxide

nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity. IET Nanobiotechnology:

Institution of Engineering and Technology. 2017; 11(6): 709-13. doi: 10.1049/iet-nbt.2016.0189.

Sedighi A, Montazer M, Samadi N. Synthesis of nano Cu2O on cotton: morphological, physical, biological

and optical sensing characterizations. Carbohydr Polym. 2014: 110: 489-98. doi:

1016/j.carbpol.2014.04.030. PMID: 24906783.

Lim J, Yeap SP, Che HX, Low SC. Characterization of magnetic nanoparticle by dynamic light scattering.

Nanoscale Res Lett. 2013: 8: 381. doi: 10.1186/1556-276X-8-381. PMID: 24011350, PMCID:

PMC3846652.

Wang R, Yang W, Song Y, Shen X, Wang J, Zhong X, et al. A General Strategy for Nanohybrids Synthesis

via Coupled Competitive Reactions Controlled in a Hybrid Process. Sci Rep. 2015; 5: 9189. doi:

1038/srep09189. PMID: 25818342, PMCID: PMC4377631.

Mahmoudi Moghaddam H, Beitollahi H, Tajik S, Jahani Sh, Khabazzadeh H, Alizadeh R. Voltammetric

determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical

sensor. Russian Journal of Electrochemistry. 2017; 53(5): 452-60. doi: 10.1134/S1023193517050123.

Beitollai H, Garkani Nejad F, Tajik S, Jahani Sh, Biparva P. Voltammetric determination of amitriptyline

based on graphite screen printed electrode modified with a Copper Oxide nanoparticles. International

Journal of Nano Dimension. 2017; 8(3): 197-205.

Jahani Sh, Beitollai H. Selective Detection of Dopamine in the Presence of Uric Acid Using NiO

Nanoparticles Decorated on Graphene Nanosheets Modified Screen-printed Electrodes. Electroanalysis.

; 28(9): 2022-8. doi: 10.1002/elan.201501136.

Beitollai H, Tajik S, Jahani Sh. Electrocatalytic Determination of Hydrazine and Phenol Using a Carbon

Paste Electrode Modified with Ionic Liquids and Magnetic Core-shell Fe3O4@SiO2/MWCNT

Nanocomposite. Electroanalysis. 2016; 28(5): 1093-9. doi: 10.1002/elan.201501020.

Khorasani-motlagh M, Noroozifar M, Jahani S. Preparation and Characterization of Nano-Sized Magnetic

Particles LaCoO3 by Ultrasonic-Assisted Coprecipitation Method. Synthesis and Reactivity in Inorganic,

Metal-Organic, and Nano-Metal Chemistry. 2015; 45(10): 1591-5. doi: 10.1080/15533174.2015.1031010.

Bankara A, Joshia B, Kumara AR, Zinjardea S. Banana peel extract mediated novel route for the synthesis

of silver nanoparticles. Colloids and Surfaces A: Physicochem Eng Aspects. 2010; 368(1-3): 58-63. doi:

1016/j.colsurfa.2010.07.024.

Ingle A, Rai M, Gade A, Bawaskar M. Fusarium solani: a novel biological agent for the extracellular

synthesis of silver nanoparticles. Nanoparticles Research. 2009; 11(8): 2079-85. doi: 10.1007/s11051-008- 9573-y.

Khadri H, Alzohairy M, Janardhan A, Kumar AP, Narasimha G. Green Synthesis of Silver Nanoparticles

with High Fungicidal Activity from Olive Seed Extract. Advances in Nanoparticles. 2013; 2(3): 241-6. doi:

4236/anp.2013.23034.

Kuppusamy P, Ichwan SJ, Parine NR. Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic

extract of Brassica oleracea L and studies on their physicochemical and biological properties. J Environ Sc.

; 29: 151-7. doi: 10.1016/j.jes.2014.06.050.

Awwad AM, Salem NM, Abdeen AO. Green synthesis of silver nanoparticles using carob leaf extract and

its antibacterial activity. Awwad et al International Journal of Industrial Chemistry. 2013; 4: 1-6. doi:

1186/2228-5547-4-29.

Lateef A, Ojo SA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, et al. Cobweb as novel biomaterial for

the green and eco-friendly synthesis of silver nanoparticles. Applied Nanoscience. 2015; 6(6): 1-12. doi:

1007/s13204-015-0492-9.

Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.

Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma,

Plasmodium falciparum parasites and malaria mosquitoes. Parasitol Int. 2016; 65(3): 276-84. doi:

1016/j.parint.2016.02.003. PMID: 26873539.

Khatami M, Pourseyedi S. Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for

synthesis high stable AgNPs with high antifungal and antibacterial activity. IET Nanobiotechnol. 2015;

(4): 184-90. doi: 10.1049/iet-nbt.2014.0052. PMID: 26224347.

Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA. Antibacterial effect of silver nanoparticles on

Staphylococcus aureus. Res Microbiol. 2011; 162(5): 542-9. doi: 10.1016/j.resmic.2011.04.009. PMID:

Wady AF, Machado AL, Foggi CC, Zamperini CA, Zucolotto V, Moffa EB, et al. Effect of a Silver

Nanoparticles Solution on Staphylococcus aureus and Candida spp. Journal of Nanomaterials. 2014; 2014:

doi: 10.1155/2014/545279.

Khameneh B, Zarei H, Fazly Bazzaz BS. The effect of silver nanoparticles on Staphylococcus epidermidis

biofilm biomass and cell viability. Nanomedicine Journal. 2014; 1(5): 302-7. doi:

7508/nmj.2015.05.003.

Published

2021-12-24

Issue

Section

Articles